answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
amm1812
2 years ago
8

A long. 1.0 kg rope hangs from a support that breaks, causing the rope to fall, if the pull exceeds 43 N. A student team has bui

lt a 2.0 kg robot "mouse" that runs up and down the rope. What minimum magnitude of the acceleration should the robot have for the rope to fail? Express your answer with the appropriate units.
Physics
1 answer:
raketka [301]2 years ago
8 0

Answer:

6.8 m/s2

Explanation:

Let g = 9.8 m/s2. The total weight of both the rope and the mouse-robot is

W = Mg + mg = 1*9.8 + 2*9.8 = 29.4 N

For the rope to fails, the robot must act a force on the rope with an additional magnitude of 43 - 29.4 = 13.6 N. This force is generated by the robot itself when it's pulling itself up at an acceleration of

a = F/m = 13.6 / 2 = 6.8 m/s2

So the minimum magnitude of the acceleration would be 6.8 m/s2 for the rope to fail

You might be interested in
Bjorn is holding a tennis ball outside a second floor window (3.5 meters from the ground) and billie jean is holding one outside
MArishka [77]
The answer is 1.01 x 10^(-11) N. I arrived to this answer through calculating the GPEs of both balls. Bjorn's ball has a GPE of 1.402 x 10^(-11) N. Billie Jean's ball has a GPE of <span>2.503 x 10^(-11) N. I subtracted the two and I found that Billie Jean's tennis ball has a GPE of 1.01 x 10^(-11) more than Bjorn's tennis ball.</span>
4 0
2 years ago
A 100 cm3 block of lead weighs 11N is carefully submerged in water. One cm3 of water weighs 0.0098 N.
Pie

#1

Volume of lead = 100 cm^3

density of lead = 11.34 g/cm^3

mass of the lead piece = density * volume

m = 100 * 11.34 = 1134 g

m = 1.134 kg

so its weight in air will be given as

W = mg = 1.134* 9.8 = 11.11 N

now the buoyant force on the lead is given by

F_B = W - F_{net}

F_B = 11.11 - 11 = 0.11 N

now as we know that

F_B = \rho V g

0.11 = 1000* V * 9.8

so by solving it we got

V = 11.22 cm^3

(ii) this volume of water will weigh same as the buoyant force so it is 0.11 N

(iii) Buoyant force = 0.11 N

(iv)since the density of lead block is more than density of water so it will sink inside the water


#2

buoyant force on the lead block is balancing the weight of it

F_B = W

\rho V g = W

13* 10^3 * V * 9.8 = 11.11

V = 87.2 cm^3

(ii) So this volume of mercury will weigh same as buoyant force and since block is floating here inside mercury so it is same as its weight =  11.11 N

(iii) Buoyant force = 11.11 N

(iv) since the density of lead is less than the density of mercury so it will float inside mercury


#3

Yes, if object density is less than the density of liquid then it will float otherwise it will sink inside the liquid

3 0
2 years ago
Cassy shoots a large marble (Marble A, mass: 0.06 kg) at a smaller marble (Marble B, mass: 0.03 kg) that is sitting still. Marbl
Lostsunrise [7]
Conservation of linear momentum:

m*v inital = m*v final

0.06*0.7 + 0.03*0 = 0.06*(-0.2) + 0.03*v

(my algebra, or use ur calculator: 0.06*.07=0.042, etc ... or ur teacher may think you got some help)

0.06*(0.7+0.2)=0.03*v, v = 0.06*0.9/0.03=1.8 m/s

Answer 1.8 m/s (positive, to the right).

 

4 0
2 years ago
Conductance is directly proportional to the length of a conductor. true false user: resistance is inversely proportional to the
zlopas [31]
1) false

2) area of the conductor
7 0
2 years ago
Read 2 more answers
Calculate the de broglie wavelength (in picometers) of a hydrogen atom traveling at 440 m/s.
Aleonysh [2.5K]

De broglie wavelength, \lambda = \frac{h}{mv}, where h is the Planck's constant,  m is the mass and v is the velocity.

h = 6.63*10^{-34}

Mass of hydrogen atom,  m = 1.67*10^{-27}kg

v = 440 m/s

Substituting

   Wavelength \lambda = \frac{h}{mv} = \frac{6.63*10^{-34}}{1.67*10^{-27}*440} = 0.902 *10^{-9}m = 902 *10^{-12}m

1 pm = 10^{-12}m\\ \\ So , \lambda =902 pm

So  the de broglie wavelength (in picometers) of a hydrogen atom traveling at 440 m/s is 902 pm

7 0
2 years ago
Other questions:
  • The total energy of a 0.050 kg object travelling at 0.70 c is
    13·1 answer
  • The Hoover Dam produces electricity which powers parts of Nevada and California. It is made up of 17 generators, each of which p
    12·2 answers
  • Explain why ice cubes formed from water of a glacier freeze at a higher temperature than ice cubes
    12·1 answer
  • You are standing at the midpoint between two speakers, a distance D away from each. The speakers are playing the exact same soun
    7·1 answer
  • Two pool balls, each moving at 2 m/s, roll toward each other and collide. Suppose after bouncing apart, each moves at 2 m/s. Thi
    8·1 answer
  • A boy is whirling a stone around his head by means of a string. The string makes one complete revolution every second; and the m
    8·1 answer
  • During a game the same batter swings at a ball thrown by the pitcher and hits a line drive. Just before the ball is hit it is tr
    7·1 answer
  • A student is conducting a physics experiment and rolls four different-
    7·1 answer
  • If you are swimming upstream (i.e., against the current), at what speed does your friend on the shore see you moving?
    12·1 answer
  • Difference between calorimeter and thermometer ?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!