Answer:
Explanation:
Given that,
A light bulb has a resistance of 2.9ohms
R = 2.9 ohms
And a battery of 1.5V is applied
V = 1.5 V
We want to find the rate of energy transformed
First we need to know what rate of energy is
Rate of energy implies that we want to find power. Power is the rate at which work is done
P = Workdone / time
Then,
In electronic, the power dissipated by a resistor is given as
P = V² / R
P = 1.5² / 2.9
P = 0.7759 W
P ≈ 0.776 W
So, the rate at which electrical energy transformed in the lightbulb is 0.776 Watts
Answer:
C) The pressure reading stays the same.
Explanation:
Answer:
by using formula F=ma which is m stand for mass a stand for acceleration. so 500kg × 2 ms^-2
Answer
given,
net charge = +2.00 μC
we know,
1 coulomb charge = 6.28 x 10¹⁸electrons
1 micro coulomb charge = 6.28 x 10¹⁸ x 10⁻⁶ electron
= 6.28 x 10¹² electrons
2.00 μC = 2 x 6.28 x 10¹² electrons
= 1.256 x 10¹³ electrons
since net charge is positive.
The number of protons should be 1.256 x 10¹³ more than electrons.
hence, +2.00 μC have 1.256 x 10¹³ more protons than electrons.
Emily throws the ball at 30 degree below the horizontal
so here the speed is 14 m/s and hence we will find its horizontal and vertical components


vertical distance between them

now we will use kinematics in order to find the time taken by the ball to reach at Allison

here acceleration is due to gravity

now we will have

now solving above quadratic equation we have

now in order to find the horizontal distance where ball will fall is given as

here it shows that horizontal motion is uniform motion and it is not accelerated so we can use distance = speed * time

so the distance at which Allison is standing to catch the ball will be 5.33 m