Answer:
V = V_0 - (lamda)/(2pi(epsilon_0))*ln(R/r)
Explanation:
Attached is the full solution
Answer:

Explanation:
We are given that
Initial velocity=u=18ft/s
Final velocity,v=38ft/s
Time=t=3 s
We have to find the average acceleration over that 3 s period.
We know that
Average acceleration,a=
Using the formula
Average acceleration,a=
Average acceleration,a=
Average acceleration,a=
Hence, the average acceleration=
Answer: 
Explanation:
According to the described situation we have the following data:
Horizontal distance between lily pads: 
Ferdinand's initial velocity: 
Time it takes a jump: 
We need to find the angle
at which Ferdinand jumps.
In order to do this, we first have to find the <u>horizontal component (or x-component)</u> of this initial velocity. Since we are dealing with parabolic movement, where velocity has x-component and y-component, and in this case we will choose the x-component to find the angle:
(1)
(2)
(3)
On the other hand, the x-component of the velocity is expressed as:
(4)
Substituting (3) in (4):
(5)
Clearing
:

This is the angle at which Ferdinand the frog jumps between lily pads
Answer:
126.99115 g
Explanation:
50 g at 90 cm
Stick balances at 61.3 cm
x = Distance of the third 0.6 kg mass
Meter stick hanging at 50 cm
Torque about the support point is given by (torque is conserved)

The mass of the meter stick is 126.99115 g
Answer:
Given that
T= 0.43 s
Radius of the ball path's , r=2.1 m
a)
We know that
f= 1/T
Here f= frequency
T= Time period
Now by putting the values
f= 1/T
T= 0.43 s
f= 1/0.43
f=2.32 Hz
b)
We know that
V= ω r
ω = 2 π f
ω=Angular speed
V= Linear speed
ω = 2 π f=ω = 2 x π x 2.32 =14.60 rad/s
V= ω r= 14.60 x 2.1 = 30.66 m/s
c)
Acceleration ,a
a =ω ² r
a= 14.6 ² x 2.1 = 447.63 m/s²
We know that g = 10 m/s²
So
a= a/g= 447.63/10 = 44.7 g m/s²
a= 44.7 g m/s²