Answer:
The approximate probability that more than 360 of these people will be against increasing taxes is P(Z> <u>0.6-0.45)</u>
√0.45*0.55/600
The right answer is B.
Step-by-step explanation:
According to the given data we have the following:
sample size, h=600
probability against increase tax p=0.45
The probability that in a sample of 600 people, more that 360 people will be against increasing taxes.
We find that P(P>360/600)=P(P>0.6)
The sample proposition of p is approximately normally distributed mith mean p=0.45
standard deviation σ=√P(1-P)/n=√0.45(1-0.45)/600
If x≅N(u,σ∧∧-2), then z=(x-u)/σ≅N(0,1)
Now, P(P>0.6)=P(<u>P-P</u> > <u>0.6-0.45)</u>
σ √0.45*0.55/600
=P(Z> <u>0.6-0.45)</u>
√0.45*0.55/600
You have two 30-60-90 triangles, ADC and BDC.
The ratio of the lengths of the sides of a 30-60-90 triangle is
short leg : long leg : hypotenuse
1 : sqrt(3) : 2
Using triangle ADC, we can find length AC.
Using triangle BDC, we can find length BC.
Then AB = AC - BC
First, we find length AC.
Look at triangle ACD.
DC is the short leg opposite the 30-deg angle.
DC = 10sqrt(3)
AC = sqrt(3) * 10sqrt(3) = 3 * 10 = 30
Now, we find length BC.
Look at triangle BCD.
For triangle BCD, the long leg is DC and the short leg is BC.
BC = 10sqrt(3)/sqrt(3) = 10
AB = AC - BC = 30 - 10 = 20
Answer:
The standard deviation of car age is 2.17 years.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
68% of the measures are within 1 standard deviation of the mean.
95% of the measures are within 2 standard deviation of the mean.
99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean = 7.5
(a) If 99.7% of the ages are between 1 year and 14 years, what is the standard deviation of car age?
This means that 1 is 3 standard deviations below the mean and 14 is 3 standard deviations above the mean.
So

I want to find 



The standard deviation of car age is 2.17 years.
Fifty Nine And Thirty Plus Twenty Nine
Answer:
1,496 new car buyers
Step-by-step explanation:
The sample size n in Simple Random Sampling is given by

where
z = 1.645 is the critical value for a 90% confidence level (*)
p= 0.33 is the population proportion.
e = 0.02 is the margin of error
so

<em>(*)</em><em>This is a point z such that the area under the Normal curve N(0,1) inside the interval [-z, z] equals 90% = 0.9</em>
It can be obtained in Excel or OpenOffice Calc with
<em>NORMSINV(0.95)</em>