Answer:
1.10 m/s
Explanation:
Linear speed is given by
Kinetic energy is given by
Potential energy
PE= mgh
From the law of conservation of energy, KE=PE hence
where m is mass, I is moment of inertia,
is angular velocity, g is acceleration due to gravity and h is height
Substituting m2-m1 for m and 0.5l for h,
for
we obtain
and making v the subject
For the rod, moment of inertia
and for sphere
hence substituting 0.5L for R then
For the sphere on the left hand side, moment of inertia I
while for the sphere on right hand side,
The total moment of inertia is therefore given by adding
Substituting
for I in the equation
Then we obtain
This is the expression of linear speed. Substituting values given we get
Answer:
circuit sketched in first attached image.
Second attached image is for calculating the equivalent output resistance
Explanation:
For calculating the output voltage with regarding the first image.

![Vout = 5 \frac{2000}{5000}[/[tex][tex]Vout = 5 \frac{2000}{5000}\\Vout = 5 \frac{2}{5} = 2 V](https://tex.z-dn.net/?f=Vout%20%3D%205%20%5Cfrac%7B2000%7D%7B5000%7D%5B%2F%5Btex%5D%3C%2Fp%3E%3Cp%3E%5Btex%5DVout%20%3D%205%20%5Cfrac%7B2000%7D%7B5000%7D%5C%5CVout%20%3D%205%20%5Cfrac%7B2%7D%7B5%7D%20%3D%202%20V)
For the calculus of the equivalent output resistance we apply thevenin, the voltage source is short and current sources are open circuit, resulting in the second image.
so.

Taking into account the %5 tolerance, with the minimal bound for Voltage and resistance.
if the -5% is applied to both resistors the Voltage is still 5V because the quotient has 5% / 5% so it cancels. to be more logic it applies the 5% just to one resistor, the resistor in this case we choose 2k but the essential is to show that the resistors usually don't have the same value. applying to the 2k resistor we have:




so.

Answer:
Radius of the solenoid is 0.93 meters.
Explanation:
It is given that,
The magnetic field strength within the solenoid is given by the equation,
, t is time in seconds

The induced electric field outside the solenoid is 1.1 V/m at a distance of 2.0 m from the axis of the solenoid, x = 2 m
The electric field due to changing magnetic field is given by :

x is the distance from the axis of the solenoid
, r is the radius of the solenoid


r = 0.93 meters
So, the radius of the solenoid is 0.93 meters. Hence, this is the required solution.
Answer:
t is appropriate to clarify that units such as time and angles the transformation is not in base ten, for example:
60 s = 1 min
60 min = 1 h
24 h = 1 day
Therefore, for this transformation, you must be more careful
the length transformation is base 10
Explanation:
In many exercises the units used are transformed by equations into other units called derivatives, in general the transformation of derived units is the product of the transformation of the constituent units.
In the example of velocity, the derivative unit is m / s, which is why it works in the same way that you transform length and time if in the equation it is multiplying it is multiplied and if it is dividing it is divided.
It is appropriate to clarify that units such as time and angles the transformation is not in base ten, for example:
60 s = 1 min
60 min = 1 h
24 h = 1 day
Therefore, for this transformation, you must be more careful
the length transformation is base 10
1000 m = 1 km
1) Focal length
We can find the focal length of the mirror by using the mirror equation:

(1)
where
f is the focal length

is the distance of the object from the mirror

is the distance of the image from the mirror
In this case,

, while

(the distance of the image should be taken as negative, because the image is to the right (behind) of the mirror, so it is virtual). If we use these data inside (1), we find the focal length of the mirror:

from which we find

2) The mirror is convex: in fact, for the sign convention, a concave mirror has positive focal length while a convex mirror has negative focal length. In this case, the focal length is negative, so the mirror is convex.
3) The image is virtual, because it is behind the mirror and in fact we have taken its distance from the mirror as negative.
4) The radius of curvature of a mirror is twice its focal length, so for the mirror in our problem the radius of curvature is: