The heavy stone would produce waves with a higher amplitude, rather than the smaller stone, because since the stone is heaver its going to have a grater impact and displace more water to create a bigger wave.
Since heat here is conserved that means that the heat out is equal to the heat in. We use the expression Q = mC(T2-T1). We caclulate as follows:
Q absorbed = Q released
m1 C (T-T1) = -m2 C (T-T1)
C can be cancelled since they are the same substance.
m1 (T-T1) = -m2 (T-T1)
25 (T-10) = -12 (T-30)
T = 16.49 degrees Celsius
Answer:
The most correct option is;
B. 10 km
Explanation:

Where:
y = Distance between the two headlights
d = Aperture of observers eye
λ = Wavelength of light
L = Distance between the observer and the headlight
Therefore, from the above solution, the distance between the observer and the headlights is 9386.066 km which is approximately 10 km.
Also we have
sinθ = y/L = 1.22 (λ/d)
sinθ = 1.22×10⁻⁴ rad
Answer:
heat required in pan B is more than pan A
Explanation:
Heat required to raise the temperature of the substance is given by the formula

now we know that both pan contains same volume of water while the mass of pan is different
So here heat required to raise the temperature of water in Pan A is given as


Now similarly for other pan we have


So here by comparing the two equations we can say that heat required in pan B is more than pan A
Answer:
Mass of Little Sister = 44.17 kg
Explanation:
From Newton's second law of motion, the magnitude of force applied on the sled is given by the following formula:
F = ma
where,
F = Force Applied = 120 N
a = Acceleration = 2.3 m/s²
m = Mass of Sled + Mass of Little Sister = 8 kg + Mass of Little Sister
Therefore,
120 N = (2.3 m/s²)(8 kg + Mass of Little Sister)
(120 N)/(2.3 m/s²) = 8 kg + Mass of Little Sister
Mass of Little Sister = 52.17 kg - 8 kg
<u>Mass of Little Sister = 44.17 kg</u>