Answer:

Step-by-step explanation:
Linear function:
A linear function has the following format:

In which m is the slope and b is the q-intercept.
One week you charged $4 per guest and averaged 80 guests per night. The next week you charged $10 per guest and averaged 44 guests per night.
This means that we have these following points: (4,80), (10,44).
Finding the slope:
With a pair of points, the slope is given by the change in q divided by the change in p.
Change in q: 44 - 80 = -36
Change in p: 10 - 4 = 6
Slope: 
So

Finding b:
We replace one of the points. Replacing (4,80).



So

Answer:
1) The probability that ten students in a class have different birthdays is 0.883.
2) The probability that among ten students in a class, at least two of them share a birthday is 0.002.
Step-by-step explanation:
Given : Assume there are 365 days in a year.
To find : 1) What is the probability that ten students in a class have different birthdays?
2) What is the probability that among ten students in a class, at least two of them share a birthday?
Solution :

Total outcome = 365
1) Probability that ten students in a class have different birthdays is
The first student can have the birthday on any of the 365 days, the second one only 364/365 and so on...

The probability that ten students in a class have different birthdays is 0.883.
2) The probability that among ten students in a class, at least two of them share a birthday
P(2 born on same day) = 1- P( 2 not born on same day)
![\text{P(2 born on same day) }=1-[\frac{365}{365}\times \frac{364}{365}]](https://tex.z-dn.net/?f=%5Ctext%7BP%282%20born%20on%20same%20day%29%20%7D%3D1-%5B%5Cfrac%7B365%7D%7B365%7D%5Ctimes%20%5Cfrac%7B364%7D%7B365%7D%5D)
![\text{P(2 born on same day) }=1-[\frac{364}{365}]](https://tex.z-dn.net/?f=%5Ctext%7BP%282%20born%20on%20same%20day%29%20%7D%3D1-%5B%5Cfrac%7B364%7D%7B365%7D%5D)

The probability that among ten students in a class, at least two of them share a birthday is 0.002.
Step-by-step explanation:

The missing number is the square-root of the constant term on the left-hand-side, which equals sqrt(1/16)=1/sqrt(16)=1/4.
Check:
(x+1/4)^2=x^2+2*(1/4)x+(1/4)^2=x^2+x/2+1/16. ok
Answer: x= 1/4
If you do not mind me asking, what did Seth write? Us helpers cannot answer it if we do not have the full question. I apologize if this seems rude.