Answer:
1320336992.2512 m²
1320.33 kilometers or 509.79 miles
Explanation:
Energy transferred by the sun

Energy required by the United States is
(assumed)
Power

Area

Area of the solar collector would be 1320336992.2512 m²
Converting to km²


Converting to mi²


Each side of the square would be 1320.33 kilometers or 509.79 miles
20.3 divided by 3.0 will get u velocity and v times 3.0s
Answer:
Explanation:
The pail is rotated at a constant rate in vertical circular path so it has the minimum speed at all points along its circular path . That means at top position the velocity is almost zero. In that case the centripetal force at top position will be provided by its weight or
mg = mv² / r ( r is radius of vertical circular path )
v = √ rg
At the bottom position its velocity will be increased due to loss of potential energy
so 1/2 m V² = 1/2 m v² + mg x 2r
V =√ 5 gr
If R be the reaction force at the bottom by bottom of pail
R - mg = mV² / r
R = mg +mV² / r
= mg + m x 5gr / r
R = 6mg
This is the magnitude of the force exerted by the water on the bottom of the pail .
Answer:
35mA
Explanation:
Hello!
To solve this problem we must use the following steps
1. Find the electrical resistance of the metal rod using the following equation

WHERE
α=
metal rod resistivity=2x10^-4 Ωm
l=leght=2m
A= Cross-sectional area

solving

2. Now we model the system as a circuit with parallel resistors, where we will call 1 the metal rod and 2 the man(see attached image)
3.we know that the sum of the currents in 1 and 2 must be equal to 5A, by the law of conservation of energy
I1+I2=5
4.as the voltage on both nodes is the same we can use ohm's law in resitance 1 and 2 (V=IR)
V1=V2
(0.14I1)=2000(i2)
solving for i1
I1=14285.7i2
5.Now we use the equation found in step 3
14285.7i2+i2=5
