answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vlad [161]
2 years ago
10

A 0.050 kg bullet strikes a 5.0 kg wooden block with a velocity of 909 m/s and embeds itself in the block which fies off its sta

nd. what was the final velocity of the bullet?
Physics
1 answer:
serg [7]2 years ago
5 0

Answer:

The final velocity of the bullet is 9 m/s.

Explanation:

We have,

Mass of a bullet is, m = 0.05 kg

Mass of wooden block is, M = 5 kg

Initial speed of bullet, v = 909 m/s

The bullet embeds itself in the block which flies off its stand. Let V is the final velocity of the bullet. The this case, momentum of the system remains conserved. So,

mv=(m+M)V\\\\V=\dfrac{mv}{m+M}\\\\V=\dfrac{0.05\times 909}{0.050+5}\\\\V=9\ m/s

So, the final velocity of the bullet is 9 m/s.

You might be interested in
You and your friend throw balloons filled with water from the roof of a several story apartment house. You simply drop a balloon
Aleks [24]

Answer:

Height = 53.361 m

Explanation:

There are two balloons being thrown down, one with initial speed (u1) = 0 and the other with initial speed (u2) = 43.12

From the given information we make the following summary

u_{1} = 0m/s

t_{1} = t

u_{2} = 43.12m/s

t_{2} = (t-2.2)s

The distance by the first balloon is

D = u_{1} t_{1}  + \frac{1}{2} at_{1}^2

where

a = 9.8m/s2

Inputting the values

D = (0)t + \frac{1}{2} (9.8)t^2\\ D = 4.9t^2

The distance traveled by the second balloon

D = u_{2} t_{2}  + \frac{1}{2} at_{2}^2

Inputting the values

D = (43.12)(t-2.2)  + \frac{1}{2} (9.8)(t-2.2)^2

simplifying

D = 4.9t^2 + 21.56t -71.148

Substituting D of the first balloon into the D of the second balloon and solving

4.9t^2 = 4.9t^2 + 21.56t -71.148 \\ 21.56t = 71.148\\ t = 3.3s

Now we know the value of t. We input this into the equation of the first balloon the to get height of the apartment

D = 4.9(3.3)^2\\ D = 53.361 m

7 0
2 years ago
(a) Aircraft sometimes acquire small static charges. Suppose a supersonic jet has a 0.500 - μC charge and flies due west at a sp
12345 [234]

(a) 2.64\cdot 10^{-8} N north

We can treat the aircraft as a single point charge moving in a magnetic field. In this case, the magnetic force exerted on the plane is

F=qvB sin \theta

where

q=0.500 \mu C = 0.500\cdot 10^{-6} C is the charge on the plane

v = 660 m/s is the velocity

B=8.00\cdot 10^{-5} T is the magnitude of the magnetic field

\theta=90^{\circ} is the angle between the direction of motion of the jet and of the magnetic field

Substituting,

F=(0.5\cdot 10^{-6})(660)(8.0\cdot 10^{-5})=2.64\cdot 10^{-8} N

The direction can be found by using Fleming's left hand rule. We have:

- index finger: magnetic field direction (straight up)

- middle finger: velocity of the plane (due west)

- force: thumb --> north

(b) Not negligible

As we can see from part (a), the magnitude of the force is not really big, so the effects are negligible.

For instance, we can compare this force with the weight of a plane. If we take a Boeing 737, its mass is about 80,000 kg, so its weight is

W=mg=(80000)(9.8)=784,000 N

As we can see, this is several orders of magnitude bigger than the magnetic force calculated at point (a), so the effects of the magnetic force are negligible.

8 0
2 years ago
Fiber optic (FO) cables are based upon the concept of total internal reflection (TIR), which is achieved when the FO core and cl
kozerog [31]

Answer:

False

Explanation:

Though fiber active cable is based on the concept of internal reflection but it is achieved by refractive index which transmit data through fast traveling pulses of light. It has a layer of glass and insulating casing called “cladding,”and this is is wrapped around the central fiber thereby causing light to continuously bounce back from the walls of the Cable.

7 0
2 years ago
Tiana jogs 1.5 km along a straight path and then turns and jogs 2.4 km in the opposite direction. She then turns back and jogs 0
vichka [17]

Answer:

Distance: 4.6km Displacement= -0.2km

Explanation:

Total distance: 1.5+2.4+0.7= 4.6 km

Displacement: 1.5-2.4+0.7= -0.2km

The displacement may also be 0.2km, it just depends on if it wants it negative or not.

7 0
2 years ago
A fisherman has caught a very large, 5.0kg fish from a dock that is 2.0m above the water. He is using lightweightfishing line th
agasfer [191]

Answer:

t = 2 s

Explanation:

As we know that fish is pulled upwards with uniform maximum acceleration

then we will have

T - mg = ma

here we know that maximum possible acceleration of so that string will not break is given as

T = 54 N

now we have

54 - (5 \times 9.8) = 5 a

a = 1 m/s^2

now for such acceleration we can use kinematics

d = \frac{1}{2}at^2

2 = \frac{1}{2}(1) t^2

t = 2 s

7 0
2 years ago
Other questions:
  • What volume in milliliters will 0.00922 g of h2 gas occupy at stp?
    12·1 answer
  • Choose which statements correctly identify the relationship of mass volume and density by clicking the sentence
    8·1 answer
  • A 0.500-kg ball traveling horizontally on a frictionless surface approaches a very massive stone at 20.0 m/s perpendicular to wa
    9·1 answer
  • Consider the static equilibrium diagram here. What is the angle F1 must make with the horizontal?
    13·2 answers
  • An auto moves 10 meters in the first second of travel, 15 more meters in the next second, and 20 more meters during the third se
    12·1 answer
  • Male Rana catesbeiana bullfrogs are known for their loud mating call. The call is emitted not by the frog's mouth but by its ear
    14·1 answer
  • To practice Problem-Solving Strategy 25.1 Power and Energy in Circuits. A device for heating a cup of water in a car connects to
    5·1 answer
  • Use the ratio version of Kepler’s third law and the orbital information of Mars to determine Earth’s distance from the Sun. Mars
    5·2 answers
  • The Type K thermocouple has a sensitivity of about 41 micro-Volts/℃, i.e. for each degree difference in the junction temperature
    6·1 answer
  • On the image at right, the two magnets are the same. Which paper clip would be harder to remove?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!