Answer:
k = 1.91 × 10^-5 N m rad^-1
Workings and Solution to this question can be viewed in the screenshot below:
Directing, ordering, or controlling
Answer:
Removal of the safety ground connection on equipment can expose users to an increased danger of electric shock and may contradict wiring regulations. ... If a fault develops in any line-operated equipment, cable shields and equipment enclosures may become energized, creating an electric shock hazard.
Answer:
\epsilon = 0.028*0.3 = 0.0084
Explanation:
\frac{P_1}{\rho} + \frac{v_1^2}{2g} +z_1 +h_p - h_l =\frac{P_2}{\rho} + \frac{v_2^2}{2g} +z_2
where P_1 = P_2 = 0
V1 AND V2 =0
Z1 =0
h_P = \frac{w_p}{\rho Q}
=\frac{40}{9.8*10^3*0.2} = 20.4 m
20.4 - (f [\frac{l}{d}] +kl) \frac{v_1^2}{2g} = 10
we know thaTV =\frac{Q}{A}
V = \frac{0.2}{\pi \frac{0.3^2}{4}} =2.82 m/sec
20.4 - (f \frac{60}{0.3} +14.5) \frac{2.82^2}{2*9.81} = 10
f = 0.0560
Re =\frac{\rho v D}{\mu}
Re =\frac{10^2*2.82*0.3}{1.12*10^{-3}} =7.53*10^5
fro Re = 7.53*10^5 and f = 0.0560
\frac{\epsilon}{D] = 0.028
\epsilon = 0.028*0.3 = 0.0084
The magnitude of applied stress in the direction of 101 is 12.25 MPA and in the direction of 011, it is not defined.
<u>Explanation</u>:
<u>Given</u>:
tensile stress is applied parallel to the [100] direction
Shear stress is 0.5 MPA.
<u>To calculate</u>:
The magnitude of applied stress in the direction of [101] and [011].
<u>Formula</u>:
zcr=σ cosФ cosλ
<u>Solution</u>:
For in the direction of 101
cosλ = (1)(1)+(0)(0)+(0)(1)/√(1)(2)
cos λ = 1/√2
The magnitude of stress in the direction of 101 is 12.25 MPA
In the direction of 011
We have an angle between 100 and 011
cosλ = (1)(0)+(0)(-1)+(0)(1)/√(1)(2)
cosλ = 0
Therefore the magnitude of stress to cause a slip in the direction of 011 is not defined.