answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexxx [7]
2 years ago
11

Write a hypothesis about the effect of the racetrack’s height on the speed of the car using the format of "if…then…because….” Be

sure to answer the lesson question "How can motion be described?” 
Physics
2 answers:
Setler [38]2 years ago
4 0
<span>If the racetrack’s length is 36 inches and is set to a height of 8 inches, 16 inches and 24 inches and each roll of the toy car is 7.8 seconds, 7.3 seconds and 6.6 seconds respectively, then, it only shows that the higher the racetrack, the faster the toy car will roll down because velocity, which measures how fast something is moving, is affected by gravity. Motion, as shown in this kind of scenario, is a kind of concept that depicts movement or change in position under given circumstances or factors over a period of time.</span>
madreJ [45]2 years ago
3 0

If the starting height of a sloped racetrack is increased, then the speed at which a toy car travels along the track will increase because the toy car will have a greater acceleration.

(I just did this) 
You might be interested in
A solid uniform sphere of mass 1.85 kg and diameter 45.0 cm spins about an axle through its center. Starting with an angular vel
KengaRu [80]

Answer:

The net torque is 0.0372 N m.

Explanation:

A rotational body with constant angular acceleration satisfies the kinematic equation:

\omega^{2}=\omega_{0}^{2}+2\alpha\Delta\theta (1)

with ω the final angular velocity, ωo the initial angular velocity, α the constant angular acceleration and Δθ the angular displacement (the revolutions the sphere does). To find the angular acceleration we solve (1) for α:

\frac{\omega^{2}-\omega_{0}^{2}}{2\Delta\theta}=\alpha

Because the sphere stops the final angular velocity is zero, it's important all quantities in the SI so 2.40 rev/s = 15.1 rad/s and 18.2 rev = 114.3 rad, then:

\alpha=-\frac{-(15.1)^{2}}{2(114.3)}=1.00\frac{rad}{s^{2}}

The negative sign indicates the sphere is slowing down as we expected.

Now with the angular acceleration we can use Newton's second law:

\sum\overrightarrow{\tau}=I\overrightarrow{\alpha} (2)

with ∑τ the net torque and I the moment of inertia of the sphere, for a sphere that rotates about an axle through its center its moment of inertia is:

I = \frac{2MR^{2}}{5}

With M the mass of the sphere an R its radius, then:

I = \frac{2(1.85)(\frac{0.45}{2})^{2}}{5}=0.037 kg*m^2

Then (2) is:

\sum\overrightarrow{\tau}=0.037(-1.00)=0.037 Nm

7 0
2 years ago
Read 2 more answers
gaseous h2 and br2 are added to an evacuated 1.15L container kept at 298K. The intial partial pressurre of H2(g) is 0.782 atm an
Nastasia [14]

The partial pressures of HBr when the system reaches equilibrium is 2.4 X 10⁻¹¹ atm

<u>Explanation:</u>

H₂ + Br₂ ⇒ 2HBr

PH₂ = 0.782atm

PBr₂ = 0.493atm

Kp = (PHBr)²/ (PH₂) (PBr₂) = 1.4 X 10⁻²¹

At equilibrium:

Let 2x = pressure of HBr

PH₂ = 0.782 -x

PBr₂ = 0.493 - x

Kp = (2x)^2 / (0.782-x)(0.493-x)

Now, because Kp is very small, x will be very small compared to 0.782 and 0.493.

Then,

Kp = 1.4X10⁻²¹ = (4x²) / (0.782)(0.493)

x = 1.2X10⁻¹¹

PHBr = 2x = 2.4 X 10⁻¹¹ atm

Therefore, the partial pressures of HBr when the system reaches equilibrium is 2.4 X 10⁻¹¹ atm

3 0
2 years ago
A 25cm×25cm horizontal metal electrode is uniformly charged to +50 nC . What is the electric field strength 2.0 mm above the cen
saw5 [17]

Answer:

The electric field strength is 4.5\times 10^{4} N/C

Solution:

As per the question:

Area of the electrode, A_{e} = 25\times 25\times 10^{- 4} m^{2} = 0.0625 m^{2}

Charge, q = 50 nC = 50\times 10^{- 9} C[/etx]Distance, x = 2 mm = [tex]2\times 10^{- 3} m

Now,

To calculate the electric field strength, we first calculate the surface charge density which is given by:

\sigma = \frac{q}{A_{e}} = \frac{50\times 10^{- 9}}{0.0625} = 8\times 10^{- 7}C/m^{2}

Now, the electric field strength of the electrode is:

\vec{E} = \frac{\sigma}{2\epsilon_{o}}

where

\epsilon_{o} = 8.85\times 10^{- 12} F/m

\vec{E} = \frac{8\times 10^{- 7}}{2\times 8.85\times 10^{- 12}}

\vec{E} = 4.5\times 10^{4} N/C

7 0
2 years ago
Which of the following situations would violate the second law of<br> thermodynamics?
Musya8 [376]
Heat flows irreversibly from hot to cold
4 0
2 years ago
Read 2 more answers
Which statement describes one way in which global winds affect weather and climate? A. Polar easterlies move warm air to the mid
Genrish500 [490]

The answer your looking for is "D".

4 0
2 years ago
Read 2 more answers
Other questions:
  • What would be the weight of a 59.1-kg astronaut on a planet with the same density as Earth and having twice Earth's radius? . .
    6·2 answers
  • An electron is in a vacuum near the surface of the Earth. Where should a second electron be placed so that the net force on the
    9·1 answer
  • At what condition does a body become weightless at the equator?
    8·1 answer
  • Locate the element calcium (Ca) on the periodic table and click on the square. Read about the properties of calcium. Why might c
    12·2 answers
  • A 40-w lightbulb connected to a 120-v source experiences a voltage surge that produces 132 v for a moment. by what percentage do
    9·1 answer
  • A massive tractor rolls down a country road. in a perfectly inelastic collision, a small sports car runs into the machine from b
    10·2 answers
  • Urban cities like Atlanta have to contend with a serious problem like pollution. Drivers in California are testing out a car tha
    7·1 answer
  • Two identical loudspeakers that are 5.00 m apart and face toward each other are driven in phase by the same oscillator at a freq
    11·1 answer
  • Consider a large truck and a small car driving up a straight, steep hill. The truck is moving at 60 miles per hour and the car a
    9·1 answer
  • A +4.0- μC charge is placed on the x axis at x = +3.0 m, and a −2.0- μC charge is located on the y axis at y = −1.0 m. Point A i
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!