Answer:
F = - 59.375 N
Explanation:
GIVEN DATA:
Initial velocity = 11 m/s
final velocity = 1.5 m/s
let force be F
work done = mass* F = 4*F
we know that
Change in kinetic energy = work done
kinetic energy = 
kinetic energy =
= -237.5 kg m/s2
-237.5 = 4*F
F = - 59.375 N
Answer:
The correct answer is option 'd': The frequency decreases and the intensity of the sound decreases.
Explanation:
1) <u>Effect on Frequency </u>
According to Doppler's effect of sound we have
for a source of sound moving away from the observer the relation between the observed and the original frequency is given by

where
c = speed of sound in air
is the velocity of observer of sound
is the velocity of source of sound
is the original frequency of sound
As we see the ratio is less than 1 thus the frequency of sound that the observer receives is less than that of source.
2) <u>Effect on Intensity:</u>
At a distance 'r' from source emitting a wave of Power 'P' is given by

As we see on increasing 'r' intensity of sound decreases.
Answer:
d = 0.645 m <em>(assuming a radius of the ball bearing of 3 mm)</em>
Explanation:
<u>The given information is:</u>
- <em>The distance from the center of the sun to the center of the earth is 1.496x10¹¹m =
</em> - <em>The radius of the sun is 6.96x10⁸m =
</em>
<u>We need to assume a radius for the ball bearing, so suppose that the radius is 3 mm =
</u>.
First, we need to find how many times the radius of the sun is bigger respect to the radius of the ball bearing, which is given by the following equation:

Now, we can calculate the distance from the center of the sun to the center of the sphere representing the earth,
:
[tex] d_{s} = \frac{d_{e}}{r_{s}/r_{b}} = \frac{1.496 \cdot 10^{11} m}{2.32\cdot 10^{11}} = 0.645 m
I hope it helps you!
Answer:
halved
Explanation:
The velocity of the a wave is obtained by multiplying the frequency and wavelength.

Where
v = Velocity
f = Frequency
= Wavelength
The velocity here is constant. So, if the frequency is doubled the wavelength is halved.