Answer:
<em>B</em><em>.</em><em> </em><em>Kinetic</em><em> </em><em>friction</em><em> </em>
Explanation:
This is definitely the correct answer because kinetic friction acts when an object is in motion and it allows the object to move without slipping, etc
<em>ALSO</em><em>,</em><em> </em><em>PLEASE DO</em><em> </em><em>MARK</em><em> </em><em>ME AS</em><em> </em><em>BRAINLIEST UWU</em><em> </em>
<em>Bonne</em><em> </em><em>journée</em><em> </em><em>;</em><em>)</em><em> </em>
<span>First, we use the kinetic energy equation to create a formula:
Ka = 2Kb
1/2(ma*Va^2) = 2(1/2(mb*Vb^2))
The 1/2 of the right gets cancelled by the 2 left of the bracket so:
1/2(ma*Va^2) = mb*Vb^2 (1)
By the definiton of momentum we can say:
ma*Va = mb*Vb
And with some algebra:
Vb = (ma*Va)/mb (2)
Substituting (2) into (1), we have:
1/2(ma*Va^2) = mb*((ma*Va)/mb)^2
Then:
1/2(ma*Va^2) = mb*(ma^2*Va^2)/mb^2
We cancel the Va^2 in both sides and cancel the mb at the numerator, leving the denominator of the right side with exponent 1:
1/2(ma) = (ma^2)/mb
Cancel the ma of the left, leaving the right one with exponent 1:
1/2 = ma/mb
And finally we have that:
mb/2 = ma
mb = 2ma</span>
Answer:
yes independent of the sign or valve of Q
Explanation:
Since I'm assuming that its perfectly elastic, considering there's not enough information given, so I think that no energy is dissipated in the collision
hmax = h - d + { [ mpvp - mb√(2gd) ] / (mp+mb) }² / (2g)