A boat is floating in a small pond. the boat then sinks so that it is completely submerged. what happens to the level of the pond?
It increases!
Answer:
a) 1.2*10^-7 m
b) 1.0*10^-7 m
c) 9.7*10^-8 m
d) ultraviolet region
Explanation:
To find the different wavelengths you use the following formula:

RH: Rydberg constant = 1.097 x 10^7 m^−1.
(a) n=2

(b)

(c)

(d) The three lines belong to the ultraviolet region.
Answer:
The time constant and its uncertainty is t ± Δt = 0.526 ± 0.057 s
Explanation:
If we make a comparison we have to:
y = A*(1-e^-(C*x)) + B
If the time remains constant we have to:
t = R*C = 1/C
In this way we calculate the time constant and its uncertainty. this will be equal to:
t ± Δt = (1/1.901) ± (0.2051/1.901)*(1/1.901) = 0.526 ± 0.057 s
Answer: (1) The resistance increases and the current decreases.
Explanation:
When the temperature of the filament increases, the vibrational energy of the constituent atoms increases which leads to increase in inter-atomic collision. Thus, the resistance would increase. The increases in resistance would obstruct the flow of charges more leading to decrease in the value of the current.
Hence, when the temperature of the filament increase, the resistance increases and current decreases.
Answer:
0.0367
Explanation:
The loss in kinetic energy results into work done by friction.
Since kinetic energy is given by
KE=0.5mv^{2}
Work done by friction is given as
W= umgd
Where m is the mass of suitacase, v is velocity of the suitcase, g is acceleration due to gravity, d is perpendicular distance where force is applied and u is coefficient of kinetic friction.
Making u the subject of the formula then we deduce that

Substituting v with 1.2 m/s, d with 2m and taking g as 9.81 m/s2 then

Therefore, the coefficient of kinetic friction is approximately 0.0367