Answer:
Wave W is a sound wave, Waves X and Y are light waves, and it is impossible to tell what kind of wave Wave Z is.
Explanation:
W travels fastest through metal
X travels fastest through air,
Y travels more slowly through water than air
Z travels more slowly at cool temperatures
W appears to be sound wave as sound travels fastest through metal .
X appears to be light wave as light travels fastest in air .
Y also appears to be light wave as speed of light is reduced when it passes from air to water .
Z It is impossible to tell anything about the nature of Z wave .
Answer:
1.6 secs
Explanation:
In a circus act, an acrobat upwards from the surface of a trampoline
At that same moment another acrobat perched 9.0m above him
A ball is released from rest
While still in motion the acrobat catches the ball
He left the ball with a trampoline of 5.6m/s
Since the ball is falling downwards from a distance then acceleration will be negative
a= -9.8
s= d
s= 1/2at^2
= 1/2 × (-9.8)t^2
= 0.5× (-9.8)t^2
d = -4.9t^2
Therefore the time the acrobat stays in the air before catching the ball can be calculated as follows
9 - 4.9t^2= 5.6t + 1/2(-9.8)t^2
9 - 4.9t^2= 5.6t + (-4.9)t^2
9 - 4.9t^2= 5.6t - 4.9t^2
9= 5.6t
t= 9/5.6
t= 1.6 secs
Answer:
at the top
Explanation:
Potential energy is the stored energy, mechanical energy,
or energy possessed by by virtue of the position of an object.an example of potential energy is the energy that a ball possesses by virtue of its sitting at the top of the stairs it being about to roll down the stairs.
Answer:
Amplitude, A = 0.049 meters
Explanation:
Given that,
A harmonic wave travels in the positive x direction at 6 m/s along a taught string. A fixed point on the string oscillates as a function of time according to the equation :
.......(1)
The general equation of a wave is given by :
.......(2)
A is amplitude of wave
On comparing equation (1) and (2) we get :
A = 0.049 meters
So, the amplitude of the wave is 0.049 meters.
Explanation:
It is given that,
Magnetic field, B = 0.1 T
Acceleration, 
Charge on electron,
Mass of electron,
(a) The force acting on the electron when it is accelerated is, F = ma
The force acting on the electron when it is in magnetic field, 
Here, 
So, 
Where
v is the velocity of the electron
B is the magnetic field


v = 341250 m/s
or

So, the speed of the electron is 
(b) In 1 ns, the speed of the electron remains the same as the force is perpendicular to the cross product of velocity and the magnetic field.