Answer:
a)W=8.333lbf.ft
b)W=0.0107 Btu.
Explanation:
<u>Complete question</u>
The force F required to compress a spring a distance x is given by F– F0 = kx where k is the spring constant and F0 is the preload. Determine the work required to compress a spring whose spring constant is k= 200 lbf/in a distance of one inch starting from its free length where F0 = 0 lbf. Express your answer in both lbf-ft and Btu.
Solution
Preload = F₀=0 lbf
Spring constant k= 200 lbf/in
Initial length of spring x₁=0
Final length of spring x₂= 1 in
At any point, the force during deflection of a spring is given by;
F= F₀× kx where F₀ initial force, k is spring constant and x is the deflection from original point of the spring.

Change to lbf.ft by dividing the value by 12 because 1ft=12 in
100/12 = 8.333 lbf.ft
work required to compress the spring, W=8.333lbf.ft
The work required to compress the spring in Btu will be;
1 Btu= 778 lbf.ft
?= 8.333 lbf.ft----------------cross multiply
(8.333*1)/ 778 =0.0107 Btu.
Answer:
option B.
Explanation:
The correct answer is option B.
The phenomenon of the curtains to pull out of the window can be explained using Bernoulli's equation.
According to Bernoulli's Principle when the speed of the moving fluid increases the pressure within the fluid decrease.
When wind flows in the outside window the pressure outside window decreases and pressure inside the room is more so, the curtain moves outside because of low pressure.
Answer: His average speed in mph over the last 400 m is 7.7 m/s.
Explanation:
Given: Hicham El Guerrouj of Morocco holds the world record in the 1500 m running race. He ran the final 400 m in a time of 51.9 s.
We know that , speed = 
Here , distance = 400m and time = 51.9 s
Then, speed = 
Hence, his average speed in mph over the last 400 m is 7.7 m/s.
Answer:
t ’=
, v_r = 1 m/s t ’= 547.19 s
Explanation:
This is a relative velocity exercise in a dimesion, since the river and the boat are going in the same direction.
By the time the boat goes up the river
v_b - v_r = d / t
By the time the boat goes down the river
v_b + v_r = d '/ t'
let's subtract the equations
2 v_r = d ’/ t’ - d / t
d ’/ t’ = 2v_r + d / t
In the exercise they tell us
d = 1.22 +1.45 = 2.67 km= 2.67 10³ m
d ’= 1.45 km= 1.45 1.³ m
at time t = 69.1 min (60 s / 1min) = 4146 s
the speed of river is v_r
t ’=
t ’=
In order to complete the calculation, we must assume a river speed
v_r = 1 m / s
let's calculate
t ’=
t ’= 547.19 s
Answer:
length = 2L, mass = M/2, and maximum angular displacement = 1 degree
Explanation:
We consider only small amplitude oscillations (like in this case), so that the angle θ is always small enough. Under these conditions recall that the equation of motion of the pendulum is:

And its solution is:

Where
are the angular frequency of the oscillations, from which we determine their period:

Therefore the period of a pendulum will only depend on its length, not on its mass or angle, for angles small enough. So, the answer is the one with the greater length.