Answer:Thus, The magnetic field around a current-carrying wire is <u><em>directly</em></u> proportional to the current and <u><em>inversely</em></u> proportional to the distance from the wire. If the current triples while the distance doubles, the strength of the magnetic field increases by <u><em>one and half (1.5)</em></u> times.
Explanation:
Magnetic field around a long current carrying wire is given by

where B= magnetic field
permeability of free space
I= current in the long wire and
r= distance from the current carrying wire
Thus, The magnetic field around a current-carrying wire is <u><em>directly</em></u> proportional to the current and <u><em>inversely</em></u> proportional to the distance from the wire.
Now if I'=3I and r'=2r then magnetic field B' is given by

Thus If the current triples while the distance doubles, the strength of the magnetic field increases by <u><em>one and half (1.5)</em></u> times.
To solve this question, we need to use the component method and split our displacements into their x and y vectors. We will assign north and east as the positive directions.
The first movement of 25m west is already split. x = -25m, y = 0m.
The second movement of 45m [E60N] needs to be split using trig.
x = 45cos60 = 22.5m
y = 45sin60 = 39.0m
Then, we add the two x and two y displacements to get the total displacement in each direction.
x = -25m + 22.5m = -2.5m
y = 0m + 39.0m
We can use Pythagorean theorem to find the total displacement.
d² = x² + y²
d = √(-2.5² + 39²)
d = 39.08m
And then we can use tan to find the angle.
inversetan(y/x) = angle
inversetan(39/2.5) = 86.3
Therefore, the total displacement is 39.08m [W86.3N]
Answer:
South and West
Explanation:
Those people are pushing the hardest. It will move south faster than it moves west.
Answer:
The drag coefficient is
Explanation:
From the question we are told that
The density of air is 
The diameter of bottom part is
The power trend-line equation is mathematically represented as

let assume that the velocity is 20 m/s
Then


The drag coefficient is mathematically represented as

Where
is the drag force
is the density of the fluid
is the flow velocity
A is the area which mathematically evaluated as

substituting values


Then

Answer:
P =105.44 W
Explanation:
Given that
D= 10 cm ,L= 60 cm
d= 0.1 cm ,B= 6.4 mT
ρ= 1.7 x 10⁻⁸ Ω · m
The number of turns N
N= L/d
N= 60/0.1 = 600 turns
Length of wire
Lc= πDN
Lc= 3.14 x 0.1 x 600
Lc=188.4 m
The magnetic filed given as


Now by putting the values

I=5.09 A
The resistance R given as




R=4.07 Ω
Power P
p =I²R
P= 5.09² x 4.07 W
P =105.44 W