answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zaharov [31]
2 years ago
13

The 100-kg homogeneous cylindrical disk is at rest when the force is applied to a cord wrapped around it, causing the disk to ro

ll. Use the principle of work and energy to determine the angular velocity of the disk when it has turned one revolution.
Physics
1 answer:
Ivahew [28]2 years ago
3 0

Complete question:

The 100-kg homogeneous cylindrical disk is at rest when the force F =500N is applied to a cord wrapped around it, causing the disk to roll. Use the principle of work and energy to determine the angular velocity of the disk when it has turned one revolution (radius of the disk = 300mm).

Answer:

The angular velocity of the disk when it has turned one revolution is 16.712 rad/s

Explanation:

From the principle of work and energy;

U = E₂ - E₁, since the disk is initially at rest, T₁ = 0

U = E₂

Work done, U = product of force and perpendicular distance

U = F × d

As the cord winds, force act through the cord at a distance of 2d

U = F × 2d

Distance of one complete revolution = 2πR = 2π(0.3) = 0.6π

U = 500 × 2(0.6π) = 1885.2 J

Kinetic energy E₂ = \frac{1}{2}I \omega^2 +  \frac{1}{2}m v^2

E_2 = \frac{1}{2}[(\frac{1}{2}mR^2)\omega^2] + \frac{1}{2}m(\omega R)^2\\\\E_2 = \frac{1}{2}[(\frac{1}{2}*100*0.3^2)\omega^2] +\frac{1}{2}*100(\omega)^2*0.3^2\\\\E_2 = 2.25 \omega^2 +4.5 \omega^2\\\\E_2 = 6.75 \omega^2

Recall that U = E₂

1885.2 = 6.75ω²

ω² = 1885.2/6.75

ω² = 279.2889

ω = √279.2889

ω = 16.712 rad/s

Therefore, the angular velocity of the disk when it has turned one revolution is 16.712 rad/s

You might be interested in
A charge of uniform volume density (40 nC/m3) fills a cube with 8.0-cm edges. What is the total electric flux through the surfac
GREYUIT [131]

Answer:

The flux through the surface of the cube is 2.314\ Nm^{2}/C

Solution:

As per the question:

Edge of the cube, a = 8.0 cm = 8.0\times 10^{- 2}\ m

Volume Charge density, \rho_{v} = 40 nC/m^{3} = 40\times {- 9}\ C/m^{3}

Now,

To calculate the electric flux:

\phi = \frac{q}{\epsilon_{o}}                                                      (1)

where

\phi = electric flux

\epsilon_{o} = 8.85\times 10^{- 12}\ F/m = permittivity of free space  

Volume Charge density for the given case is given by the formula:

\rho_{v} = \frac{Total\ charge, q}{Volume of cube, V}                  (2)

Volume of cube, V = a^{3}

Thus

V = (8.0\times 10^{- 2})^{3} = 5.12\times 10^{- 4}\ m^{3}

Thus from eqn (2), the total charge is given by:

q = \rho_{v}V = 40\times {- 9}\times 5.12\times 10^{- 4}

q = 2.048\times 10^{-11}\ F = 20.48\ pF

Now, substitute the value of 'q' in eqn (1):

\phi = \frac{2.048\times 10^{-11}}{8.85\times 10^{- 12}} = 2.314\ Nm^{2}/C

5 0
2 years ago
Upon impact, bicycle helmets compress, thus lowering the potentially dangerous acceleration experienced by the head. A new kind
Dimas [21]

Answer:

acceleration = -15.3g

Explanation:

given data

speed = 6.00 m/s.

thickness = 12

moves the entire = 12.0 cm

solution

we will use here equation that is

v² - u²  = 2 × a × s    ........................1

here v = 0 is the final velocity and u = 6.0 m/s is initial velocity and s= 0.12 m is the distance covered and a is the acceleration

so we put here value and get acceleration

a = \frac{v^2-u^2}{2s}

a = \frac{0^2-6^2}{2\times 0.12}

a = -150 m/s² ( negative sign means it is a deceleration )

and

acceleration in units of g  

a = \frac{-150}{9.8}

a = -15.3 g

6 0
2 years ago
The speed v of a sound wave traveling in a medium that has bulk modulus b and mass density ρ (mass divided by the volume) is v=b
PilotLPTM [1.2K]

As it is given that Bulk modulus  and density related to velocity of sound

v = \sqrt{\frac{B}{\rho}}

by rearranging the equation we can say

B = \rho * v^2

now we need to find the SI unit of Bulk modulus here

we can find it by plug in the units of density and speed here

B = \frac{kg}{m^3} * (\frac{m}{s})^2

so SI unit will be

B = \frac{kg}{m* s^2}

SO above is the SI unit of bulk Modulus

3 0
2 years ago
During the construction of an office building, a hammer is accidentally dropped from a height of 784 ft. the distance (in feet)
Serga [27]
T= 24.5 feet per second. That is the velocity it reaches at the end of its fall
7 0
2 years ago
Read 2 more answers
A roller coaster car drops a maximum vertical distance of 35.4 m. Determine the maximum speed of the car at the bottom of that d
marissa [1.9K]

Answer:

The maximum speed of the car at the bottom of that drop is 26.34 m/s.

Explanation:

Given that,

The maximum vertical distance covered by the roller coaster, h = 35.4 m

We need to find the maximum speed of the car at the bottom of that drop. It is a case of conservation of energy. The energy at bottom is equal to the energy at top such that :

mgh=\dfrac{1}{2}mv^2

v=\sqrt{2gh}

v=\sqrt{2\times 9.8\times 35.4}

v = 26.34 m/s

So, the maximum speed of the car at the bottom of that drop is 26.34 m/s. Hence, this is the required solution.

8 0
2 years ago
Other questions:
  • Which of the following are linear defects?. . An edge dislocation. . A Frenkel defect. . A screw dislocation. . A Schottky defec
    6·1 answer
  • a driver shifts into neutral when her 1200 kg is moving at 80 km/h and finds the speed has dropped to 65 km/h 10 s later . what
    9·1 answer
  • What size force does the femur exerts on the kneecap if the tendons are oriented as in the figure and the tension in each tendon
    15·1 answer
  • Two balls, each with a mass of 0.5 kg, collide on a pool table. Is the law of conservation of momentum satisfied in this collisi
    6·2 answers
  • The following diagram shows resistors in ___ and is ____ of the arrangement of circuit elements in homes.
    6·2 answers
  • A guitar string has a linear density of 8.30 ✕ 10−4 kg/m and a length of 0.660 m. the tension in the string is 56.7 n. when the
    5·2 answers
  • Suppose 1 kg of Hydrogen is converted into Helium. a) What is the mass of the He produced? b) How much energy is released in thi
    11·2 answers
  • Two oppositely charged but otherwise identical conducting plates of area 2.50 square centimeters are separated by a dielectric 1
    12·1 answer
  • A 7.5 nC point charge and a - 2.9 nC point charge are 3.2 cm apart. What is the electric field strength at the midpoint between
    13·1 answer
  • A radioactive nucleus has a half-life of 5*108 years. Assuming that a sample of rock (say, in an asteroid) solidified right afte
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!