Answer:
2450 cm3
Explanation:
Volume of cylinder = V=πr2h
2.45L = 2450mL
1mL = 1 cm cubed
2450mL = 2450 cm cubed
Answer:
0.11 mol
Explanation:
<em>This is the chemical formula for acetic acid (the chemical that gives the sharp taste to vinegar): CH₃CO₂H. An analytical chemist has determined by measurements that there are 0.054 moles of oxygen in a sample of acetic acid. How many moles of hydrogen are in the sample?</em>
Step 1: Given data
- Formula of acetic acid: CH₃CO₂H
- Moles of oxygen in the sample of acetic acid: 0.054 moles
Step 2: Establish the appropriate molar ratio
According to the chemical formula of acetic acid, the molar ratio of H to O is 4:2.
Step 3: Calculate the moles of atoms of hydrogen
We will use the theoretical molar ratio for acetic acid.
0.054 mol O × (4 mol H/2 mol O) = 0.11 mol H
Answer:
C
Explanation:
Looking at the periodic table, we can see that sodium is in group 1, so a sodium ion would be Na⁺, with a charge of +1. Oxygen is in group 16, so an oxygen ion would be O²⁻, with a charge of -2.
A compound formed only by a single sodium ion and a single oxygen ion would thus have a charge of -1, and in order to have a stable ionic compound its charge must be zero.
Answer is: 6.022·10²² molecules of glucose.
c(glucose) = 100 mM.
c(glucose) = 100 · 10⁻³ mol/L.
c(glucose) = 0.1 mol/L; concentration of glucose solution.
V(glucose) = 1 L; volume of glucose solution.
n(glucose) = c(glucose) · V(glucose).
n(glucose) = 0.1 mol/L · 1 L.
n(glucose) = 0.1 mol; amount of substance.
N(glucose) = n(glucose) · Na (Avogadro constant).
N(glucose) = 0.1 mol · 6.022·10²³ 1/mol.
N(glucose) = 6.022·10²².