The correct answer is that 1.125 mol of NaOH is available, and 60.75 g of FeCl₃ can be consumed.
The mass of NaOH is 45 g
The molar mass of NaOH = 40 g/mol
The moles of NaOH = mass / molar mass
= 45 / 40
= 1.125
Thus, 1.125 mol NaOH is available
3 NaOH + FeCl₃ ⇒ Fe (OH)₃ + 3NaCl
3 mol of NaOH react with 1 mol of FeCl₃
1.125 moles of NaOH will react with x moles of FeCl₃
x = 1.125 / 3
x = 0.375 mol
0.375 mol FeCl₃ can take part in reaction
The molar mass of FeCl₃ is 162 g/mol
The mass of FeCl₃ = moles × mass
= 0.375 × 162
= 60.75 g
Thus, the amount of FeCl₃, which can be consumed is 60.75 g
Answer : The pressure in the flask after reaction complete is, 2.4 atm
Explanation :
To calculate the pressure in the flask after reaction is complete we are using ideal gas equation.

where,
P = final pressure in the flask = ?
R = gas constant = 0.0821 L.atm/mol.K
T = temperature = 
V = volume = 4.0 L
= moles of
= 0.20 mol
= moles of
= 0.20 mol
Now put all the given values in the above expression, we get:


Thus, the pressure in the flask after reaction complete is, 2.4 atm
Answer:
25.99mL is the volume internal volume of the flask
Explanation:
<em>To complete the question:</em>
<em>The temperature of the water was measured to be 21ºC. Use this data to find the internal volume of the stoppered flask</em>
<em />
The flask was filled with water, that means the internal volume of the flask is equal to the volume that the water occupies.
To find the volume of the water you need to find the mass and by the use of density of water at 21ºC (0.997992g/mL), you can find the volume of the flask, thus:
Mass water = Mass filled flask - Mass of clean flask
Mass water = 60.167g - 34.232g
Mass water = 25.935g of water.
To convert this mass to volume:
25.935g × (1mL / 0.997992g) =
<h3>25.99mL is the volume internal volume of the flask</h3>
The Lewis structure of
Diimide (N₂H₂) is shown below.
In this molecule two Nitrogen atoms attached to each other through a
double bond are further attached to one one Hydrogen atom. Also, each Nitrogen atom carries one
non-binding electron pair (
Lone Pair) (Highlighted RED).
Result: Option-C (<span>each nitrogen has one nonbinding electron pair) is the correct answer.</span>
"<span>30.4 ppm > 4 ppm, unsafe to drink" is the one among the following choices given in the question that shows that the water should be declared unsafe for drinking. The correct option among all the options that are given in the question is the third option or the penultimate option. I hope that the answer has helped you.</span>