Answer:
Option c → Tert-butanol
Explanation:
To solve this, you have to apply the concept of colligative property. In this case, freezing point depression.
The formula is:
ΔT = Kf . m . i
When we add particles of a certain solute, temperature of freezing of a solution will be lower thant the pure solvent.
i = Van't Hoff factor (ions particles that are dissolved in the solution)
At this case, the solute is nonvolatile, so i values 1.
ΔT = Difference between fussion T° of pure solvent - fussion T° of solution.
T° fussion paradichlorobenzene = 56 °C
T° fussion water = 0°
T° fussion tert-butanol = 25°
Water has the lowest fussion temperature and the paradichlorobenzene has the highest Kf. But the the terbutanol, has the highest Kf so this solvent will have the largest change in freezing point, when all the molalities are the same.
Given mass of KNO₃=346g
Molar mass of KNO₃=(39.098)+(14)+(15.99*3)=101.068gmol⁻¹
Volume of Solution=750ml=0.75dm³
Molarity=(mass of solute/molar mass of solute)*(1/volume of sol. in dm³)
=(346/101.068)*(1/0.75)
=4.56 mol dm⁻³
According to the Law of Conservation of Energy, energy is neither created nor destroyed. It is an entity that's always existing in the environment. It takes different forms of energy. Among the choices, the best answer would be letter B. Chemical energy. The chemical energy originates from the energy within the muscles that are dormant. Once used, this chemical energy is transformed into mechanical energy by the action of pushing his foot on the ground.
<span>Alkanes are unreactive except in combustion reactions.</span>
Answer:
C.12.3%. you need to use pv=nRT (ideal gas law)