Answer:
a. 123.9°C
b.
c.
Explanation:
Hello, I'm attaching a picture with the numerical development of this exercise.
a. Since the steam is overheated vapour, the specific volume is gotten from the corresponding table. Then, as it became a saturated vapour, we look for the interval in which the same volume of state 1 is, then we interpolate and get the temperature.
b. Now, at 80°C, since it is about a rigid tank (constant volume for every thermodynamic process), the specific volume of the mixture is 0.79645 m^3/kg as well, so the specific volume for the liquid and the vapour are taken into account to get the quality of 0.234.
c. Now,since this is an isocoric process, the heat transfer per kg of steam is computed as the difference in the internal energy, considering the initial condition (showed in a. part) and the final one computed here.
** The thermodynamic data were obtained from Cengel's thermodynamics book 7th edition.
Best regards.
Answer:
194 g/mol.
Explanation:
Hello,
In this case, one first must compute the mass of each element as shown below:

Next, the corresponding moles:

Then, each element's subscripts is found to be:

Therefore, the empirical formula is:

Nonetheless, it has a molar mass of 97bg/mol, thereby, by multiplying such formula by 2 one gets:

Which has a molar mass of 194 g/mol being correctly contained in the given interval.
Best regards.
First of all, there are five types of solid materials:
Metallic solids which are solids composed of metal atoms that are held together by metallic bonds.
Network solid is a chemical compound in which the atoms are bonded by covalent bonds in a continuous network extending throughout the material.
Molecular solid is a solid consisting of discrete molecules.
Ionic solid is a chemical compound composed of ions held together by electrostatic forces termed ionic bonding.
Amorphous solid is non-crystalline solid that lacks the long-range order that is characteristic of a crystal.
Now, after the defined all the types of solid materials in the equation lets to solve it.
A. the answer is the network solids, because covalent bonds are relatively strong, covalent are typically characterized by hardness, strength, and high melting points.
B. the answer is the metallic solids, due to that heat conduction occurs when a substance is heated and the particles will gain more energy vibrating more. These molecules then bump into nearby particles and transfer some of their energy to them and in metals this process have a higher probability than in the case of other solids due to the nature of the chemical bonds. It also has a range of hardness due to the strength of metallic bonds which varies dramatically.
C. the answer is the ionic solid; due to positive and negative ions which are bonded to form a crystalline solid held together by charge attractions.