The group of molecules called nucleotides contain phosphate groups, pyrimidines, purines, and <span>pentose (a 5-carbon sugar). Therefore, E. all of the above is the correct answer.</span>
The location of the valence electron or the outermost electron is expressed in quantum numbers. There are five quantum numbers: prinicipal (n), angular momentum (l), magnetic (ms) and magnetic spin (ms) quantum numbers. This is based on Bohr's atomic model where electrons orbit around the nucleus. These electrons are in the orbitals with specific energy levels. Starting from energy level 1 that is closest to the nucleus, the energy level decreases to 2, 3, 4, 5, 6, and 7. These energy level numbers represent the principal quantum number. Within each orbital also contains subshell. From increasing to decreasing order, these subshells are the s, p, d and f subshells. These subshells represent the angular momentum quantum numer. Specifically, s=0, p=1, d=2 and f=3. Therefore, if the electron is in the orbital 5p, the quantum number would be: 5, 1. Applying these to the choices, the correct pairing would be:
2p: n=2. l=1
3d: n=3, l=2
2s: n=2. l=0
4f: n=4. l=3
1s: n=1, l=0
Answer:
1.30mL
Explanation:
The equation for the reaction is given below:
H2SO4 + 2KOH —> K2SO4 + 2H2O
From the equation above we obtained the following:
Mole of acid (nA) = 1
Mole of base (nB) = 2
The following data were obtained from the question:
Mb = 0.00945M
Vb =?
Va = 50mL
Ma = 1.23 × 10^−4M
Using MaVa / MbVb = nA/nB, we can calculate the volume of KOH as illustrated below:
MaVa / MbVb = nA/nB
(1.23 × 10^−4 x 50)/0.00945xVb = 1/2
Cross multiply to express in linear form
1.23 × 10^−4 x 50 x 2 = 0.00945xVb
Divide both side by 0.00945
Vb = (1.23 × 10^−4 x 50 x 2) /0.00945
Vb = 1.30mL
Answer: The value of
for the reaction is, -2512.4 kJ
Explanation:
The chemical equation for the combustion of acetylene follows:

The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(3\times \Delta H^o_f_{(CO_2(g))})+(4\times \Delta H^o_f_{(H_2O(g))})]-[(1\times \Delta H^o_f_{(C_2H_2(g))})+(5\times \Delta H^o_f_{(O_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%283%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CO_2%28g%29%29%7D%29%2B%284%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28H_2O%28g%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28C_2H_2%28g%29%29%7D%29%2B%285%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28O_2%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(4\times (-393.5))+(2\times (-241.8))]-[(2\times (227.4)+(5\times (0))]\\\\\Delta H^o_{rxn}=-2512.4kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%284%5Ctimes%20%28-393.5%29%29%2B%282%5Ctimes%20%28-241.8%29%29%5D-%5B%282%5Ctimes%20%28227.4%29%2B%285%5Ctimes%20%280%29%29%5D%5C%5C%5C%5C%5CDelta%20H%5Eo_%7Brxn%7D%3D-2512.4kJ)
Therefore, the value of
for the reaction is, -2512.4 kJ
1) All matter is made of atoms. Atoms are indivisible and indestructible.
2) All atoms of a given element are identical in mass and properties
3) Compounds are formed by a combination of two or more different kinds of atoms.
4) A chemical reaction is a rearrangement of atoms.
1 and 2 were proved wrong.