Answer:
Explanation:
CHECK THE ATTACHMENT FOR THE COMPLETE QUESTION AND THE DETAILED EXPLANATION
NOTE:
Equatorial atoms are referred to atoms that are attached to carbons in the cyclohexane ring which is found at the equator of the ring.
Axial atoms are atoms that exist in a bond which is parallel to the axis of the ring in cyclohexane
In order to compute the y-component of a vector, we simply use the formula:
Fy = F*sin(∅)
Where ∅ is the angle of the vector measured from the positive x-axis and F is the magnitude of the vector.
Similarly, the x-component is calculated by substituting sin(∅) with cos(∅)
Answer : 
Explanation : To convert amu i.e. atomic mass unit in grams we have the conversion factor as 1 amu = 
we know the mass of the proton is 1.0073 amu
So converting it into grams we have to multiply;
1.0073 amu X
= 
Now, Volume = 1/6πd³ as diameter is given as
converting it to cm will require to multiply with 100
∴ Volume = 1/6π
Hence, volume = 
Therefore, Density = mass / volume
∴ Density = 
Therefore, Density will be
.
Answer:


Explanation:
Hello,
In this case, we can compute the mole fraction of benzene by using the following formula:

Whereas n accounts for the moles of each substance, thus, we compute them by using molar mass of benzene and cyclohexane:

Thus, we compute the mole fraction:

Next, for the molality, we define it as:

Whereas we also use the moles of benzene but rather than the moles of cyclohexane, its mass in kilograms (0.08074 kg), thus, we obtain:

Or just 0.990 m in molal units (mol/kg).
Best regards.
Answer:
Energy transfers from the metal to the water and calorimeter until they are all at room temperature.
Explanation:
CHECK THE COMPLETE QUESTION BELOW;
A metal sample is heated and placed into the water in a calorimeter at room temperature. Which statement best describes how the calorimeter can be used to determine the specific heat capacity of the metal sample?
Energy transfers to the metal from the water and calorimeter until they are all at room temperature
. Energy transfers from the metal to the water and calorimeter until they are all at room temperature.
Energy transfers to the metal from the water and calorimeter until they all reach a single temperature.
Energy transfers from the metal to the water and calorimeter until they all reach a single temperature.
EXPLANATION;
Using calorimeter to determine the specific heat capacity of the metal sample can be associated to the theory of conservation of energy because heat which is a form of energy is been transfer of heat between the metal to the water and the calorimeter, this process will proceed till single temperature is attained.
The change in the amount of temperature of the water in the calorimeter is measured in order to get the difference in heat change of the calorimeter water.
CHANGE IN HEAT CAN BE CALCULATED USING THE FORMULA.
Q = cmΔT where Q is the change in heat , c is the specific heat capacity and ΔT is the change in temperature