<span>1. The two boats picked for the trip are the steamboat and the tall ship. Let us assume that we will take the steamboat going to the island, and then we will take the tall ship for the return trip. We will then relate the distances travelled by both ships to each other.
2. We know that the steamboat takes five hours to complete the trip. The tall ship takes more time, at ten hours to complete the trip. We do not have the exact speeds of the steamboat or of the tall ship, but we do know that the tall ship is 10 knots slower than the steamboat. We likewise do not know the exact distance travelled by either ship, but we do know that both travel the same distance. We want to find out how fast each boat travels. We expect the answers to be in knots, with a difference of 10.
3. We know that distance is equivalent to the product of speed of a boat multiplied by the time of travel. For the trip going to the island, we will use the steamboat. Let its speed be x knots (equivalent to x nautical miles per hour), and let the distance going to the island be d nautical miles. Given that the time takes is 5 hours, this means that d = 5x.
4. If we let x be the speed of the
boat you are taking to the island (the steamboat), then we know that the speed of the other boat (the tall ship) is 10 knots less than the steamboat's. So the speed of the tall ship (for the return trip) is (x - 10) knots.
5. Similar to part 3: we will multiply speed by time to determine the distance from the island. From part 4, we have determined that the speed of the tall ship to be used in returning is (x - 10) knots. Meanwhile, the given in the problem says that the tall ship will take 10 hours to make the trip. Therefore the distance will be equal to d = 10(x - 10) = 10x - 100 nautical miles.
6. We can assume that the distance travelled going to the island is the same distance travelled coming back. Therefore, we can equate the formula for distance from part 3 for the steamboat, to the distance from part 5 for the tall ship.
5x = 10x - 100
7. Solving for x: 5x = 10x - 100
-5x = -100
x = 20
Since x is the speed of the steamboat, x = 20 means that the steamboat's speed is 20 knots.
8. We determined in part 4 that the speed of the second boat (in our case, the tall ship) is (x - 10) knots. Since we have calculated in part 7 that the steamboat travels at x = 20 knots, then the speed of the tall ship is (x - 10) = 20 - 10 = 10 knots.</span>
Answer:
the answer is $5,000
Step-by-step explanation:
the question is asking what the initial value of the painting is and in the equation, they are trying to find out how much the painting will cost after t years. the 1.098 is how much the painting decreases each year and it is being multiplied by &5000 so $5000 is the original value of the painting.
The correct answer for the question that is being presented above is this one: "The axis of symmetry is to the left of zero." The a value of a function in the form f(x) = ax2 + bx + c is negative. The statement must be true is this The axis of symmetry is to the left of zero.<span>
</span>
Answer:
The sample consisting of 64 data values would give a greater precision.
Step-by-step explanation:
The width of a (1 - <em>α</em>)% confidence interval for population mean μ is:

So, from the formula of the width of the interval it is clear that the width is inversely proportion to the sample size (<em>n</em>).
That is, as the sample size increases the interval width would decrease and as the sample size decreases the interval width would increase.
Here it is provided that two different samples will be taken from the same population of test scores and a 95% confidence interval will be constructed for each sample to estimate the population mean.
The two sample sizes are:
<em>n</em>₁ = 25
<em>n</em>₂ = 64
The 95% confidence interval constructed using the sample of 64 values will have a smaller width than the the one constructed using the sample of 25 values.
Width for n = 25:
Width for n = 64:
![\text{Width}=2\cdot z_{\alpha/2}\cdot \frac{\sigma}{\sqrt{64}}=\frac{1}{8}\cdot [2\cdot z_{\alpha/2}\cdot \sigma]](https://tex.z-dn.net/?f=%5Ctext%7BWidth%7D%3D2%5Ccdot%20z_%7B%5Calpha%2F2%7D%5Ccdot%20%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%7B64%7D%7D%3D%5Cfrac%7B1%7D%7B8%7D%5Ccdot%20%5B2%5Ccdot%20z_%7B%5Calpha%2F2%7D%5Ccdot%20%5Csigma%5D)
Thus, the sample consisting of 64 data values would give a greater precision