Answer:
MnO- Manganese Oxide
Explanation:
Empirical formula: This is the formula that shows the ratio of elements
present in a
compound.
How to determine Empirical formula
1. First arrange the symbols of the elements present in the compound
alphabetically to determine the real empirical formula. Although, there
are exceptions to this rule, E.g H2So4
2. Divide the percentage composition by the mass number.
3. Then divide through by the smallest number.
4. The resulting answer is the ratio attached to the elements present in
a compound.
Mn O
% composition 72.1 27.9
Divide by mass number 54.94 16
1.31 1.74
Divide by the smallest number 1.31 1.31
1 1.3
The resulting ratio is 1:1
Hence the Empirical formula is MnO, Manganese oxide
Answer:
a) The structure of anthracene is planar with all the pi electrons delocalized in the structure to maintain aromaticity.
b) The C-C bond length in anthracene is about 140 pm with all the bond lengths being similar to each other.
The standard C-C bond length is 154 pm while standard C=C bond is about 134 pm. Therefore the bond length in anthracene is smaller than standard C-C bond length and longer than standard C=C bond length. This can be explained from the fact that the C-C bonds in anthracene has be mixed characteristics of single and double bond because of the delocalization of pi electrons over the whole structure. As a result, they are neither fully single nor fully double bond in nature. Hence the observed bond lengths.
c) This molecule is not flat. The N-atom is sp3 hybridized here and the H-atom attached to N will remain out of plane.
Explanation:
<span>Answer:
.01 moles of D to .005 moles of L ~ so, .01+.005 = .015 total; using this total value, divide the portions of D and L.
so .01/.015 to .005/.015 ~ 67% D to 33% L.
And thus, the enantiomer excess will be 34%.</span>
The concentration of AlCl3 solution if 150 ml of the solution contains 550 mg of cl- ion is 0.0344 M
calculation
concentration = moles /volume in liters
volume in liters = 150 /1000= 0.15 L
number of moles calculation
write the equation for dissociation of Al2Cl3
that is AlCl3 ⇔ Al^3+ + 3 Cl ^-
find the moles of Cl^- formed
moles =mass/molar mass
mass in grams= 550/ 1000 =0.55 grams
molar mass of Cl^- =35.5 g/mol
moles is therefore= 0.55/35.5 =0.0155 moles
by use of mole ration betweem AlCl3 to Cl^- which is 1:3 the moles of AlCl3 is =0.0155 x 1/3= 5.167 x10^-3 moles
concentration of AlCl3 is therefore= 5.167 x10^-3/ 0.15 =0.0344 M
Answer:
58.6 % by mass of Na₂CO₃
Explanation:
This is the reaction:
Na₂CO₃ + MgCO₃ + 4HCl → MgCl₂ + 2NaCl + 2CO₂ + 2H₂O
Let's find out the moles of CO₂ produced, by the Ideal Gases Law
1.24 atm . 1.67 L = n . 0.082 . 299K
(1.24 atm . 1.67 L / 0.082 . 299K) = n
0.0844 moles = n
Ratio is 2:1, so 2 moles of dioxide were produced by 1 mol of sodium carbonate. Let's make a rule of three:
2 moles of CO₂ were produced by 1 mol of Na₂CO₃
Then, 0.0844 moles of Co₂ would beeen produced by (0.0844 .1)/2 = 0.0422 moles of Na₂CO₃.
Let's convert this moles into mass (mol . molar mass)
0.0422 mol . 106 g/mol = 4.47 g
Finally we can know the mass percent of sodium carbonate in the mixture
(Mass of compound /Total mass) . 100 → (4.47 g / 7.63g) . 100 = 58.6 %