Answer:
0.3229 M HBr(aq)
0.08436M H₂SO₄(aq)
Explanation:
<em>Stu Dent has finished his titration, and he comes to you for help with the calculations. He tells you that 20.00 mL of unknown concentration HBr(aq) required 18.45 mL of 0.3500 M NaOH(aq) to neutralize it, to the point where thymol blue indicator changed from pale yellow to very pale blue. Calculate the concentration (molarity) of Stu's HBr(aq) sample.</em>
<em />
Let's consider the balanced equation for the reaction between HBr(aq) and NaOH(aq).
NaOH(aq) + HBr(aq) ⇄ NaBr(aq) + H₂O(l)
When the neutralization is complete, all the HBr present reacts with NaOH in a 1:1 molar ratio.

<em>Kemmi Major also does a titration. She measures 25.00 mL of unknown concentration H₂SO₄(aq) and titrates it with 0.1000 M NaOH(aq). When she has added 42.18 mL of the base, her phenolphthalein indicator turns light pink. What is the concentration (molarity) of Kemmi's H₂SO₄(aq) sample?</em>
<em />
Let's consider the balanced equation for the reaction between H₂SO₄(aq) and NaOH(aq).
2 NaOH(aq) + H₂SO₄(aq) ⇄ Na₂SO₄(aq) + 2 H₂O(l)
When the neutralization is complete, all the H₂SO₄ present reacts with NaOH in a 1:2 molar ratio.

A.S OLOS kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkll
Answer:
This is due the different charges of fluoride and oxide ions.
Explanation:
When calcium reacts it is oxidized to Ca²⁺. In the same way, fluoride ion is reduced to F⁻ and oxide ion to O²⁻.
When these ions are combined, the molecule must be neutral. That means 2 ions of F⁻ are necessaries and just 1 O²⁻ ion will reacts producing:
CaF₂ and CaO.
The different charges of these ions is the reason why calcium will combine in different ratios.
gas to liquid
Explanation:
The change of state indicated by this analogy is from gas to liquid.
Cylinder to the left is filled with gases
Cylinder to the right is made up of liquid.
- Gases occupy the volumes of containers they are introduced into.
- They are random and possess a high kinetic energy.
- Liquids have definite volume and flow with one another.
- The gases in A are dispersed and in random motion.
- This phase change is called condensation
learn more:
Phase change brainly.com/question/1875234
#learnwithBrainly
Answer:
474.3 cm³
Explanation:
Given data:
Initial volume of chlorine gas = 568 cm³
Initial temperature = 25°C
Final volume = ?
Final temperature = -25°C
Solution:
Initial temperature = 25°C (25+273 = 297 K)
Final temperature = -25°C (-25 +273 = 248 K)
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 568 cm³ × 248 K /297 K
V₂ = 140864 cm³.K / 297 K
V₂ = 474.3 cm³