Answer:
formed 4.6 billion years ago
orbit the Sun
range in size from a few feet to more than 500 miles across
most are found in the asteroid belt
Explanation:
Asteroids are rocky bodies orbiting the sun. Asteroids are irregular is shape and size. The size varies from few feet to 500 miles across. Majority of the asteroids lie in asteroid belt which lies between the orbits of Mars and Jupiter. These are though to be remains of unformed planet about 4.6 billion years ago due to high gravitational pull of Jupiter. The largest asteroid is Ceres which is also a dwarf planet. The mass of the entire asteroid belt is just 4% the mass of the moon.
Answer:
Option B is the correct answer.
Explanation:
Shear stress is the ratio of shear force to area.
We have
Shear stress = 3 N/mm² = 3 x 10⁶ N/m²
Area = Area of rectangle = 10 x 10⁻² x d = 0.1d
Shear force = 50000 N
Substituting

Width of beam = 16.67 cm
Option B is the correct answer.
Answer:
The net torque is 0.0372 N m.
Explanation:
A rotational body with constant angular acceleration satisfies the kinematic equation:
(1)
with ω the final angular velocity, ωo the initial angular velocity, α the constant angular acceleration and Δθ the angular displacement (the revolutions the sphere does). To find the angular acceleration we solve (1) for α:

Because the sphere stops the final angular velocity is zero, it's important all quantities in the SI so 2.40 rev/s = 15.1 rad/s and 18.2 rev = 114.3 rad, then:

The negative sign indicates the sphere is slowing down as we expected.
Now with the angular acceleration we can use Newton's second law:
(2)
with ∑τ the net torque and I the moment of inertia of the sphere, for a sphere that rotates about an axle through its center its moment of inertia is:
With M the mass of the sphere an R its radius, then:

Then (2) is:

Time=speed/acceleration
Gravitaional Acceleration=9.8 m/s^2
Speed=24.5 m/s
Time=24.5/9.8=2.5 s