answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DerKrebs [107]
2 years ago
9

Suppose you throw a baseball downward from a roof so that it initially has 120 J of gravitational potential energy, and 10 J of

kinetic energy. What will be true of the kinetic energy at the ground?
A.
It will be 0 J.
B.
It will be greater than 10 J.
C.
It will decrease from 10 J.
D.
It will equal 10 J.
Physics
2 answers:
vlabodo [156]2 years ago
5 0

Answer:

B.

It will be greater than 10 J.

Explanation:

The total mechanical energy of an object is the sum of its potential energy (PE) and its kinetic energy (KE):

E = PE + KE

According to the law of conservation of energy, when there are no frictional forces on an object, its mechanical energy is conserved.

The potential energy PE is the energy due to the position of the object: the highest the object above the ground, the highest its PE.

The kinetic energy KE is the energy due to the motion of the object: the highest its speed, the largest its KE.

Here at the beginning, when it is at the top of the roof, the baseball has:

PE = 120 J

KE = 10 J

So the total energy is

E = 120 + 10 = 130 J

As the ball falls down, its potential energy decreases, since its height decreases; as a result, since the total energy must remain constant, its kinetic energy increases (as its speed increases).

Therefore, when the ball reaches the ground, its kinetic energy must be greater than 10 J.

Artemon [7]2 years ago
4 0

Answer:

<h2>the correct answer is <u><em>B</em></u></h2>

Explanation:

You might be interested in
A helicopter, starting from rest, accelerates straight up from the roof of a hospital. The lifting force does work in raising th
kobusy [5.1K]

Answer:

24,267.6 watts

Explanation:

from the question we are given the following:

mass (m) = 810 kg

final velocity (v) = 7 m/s

initial velocity (u) = 0 m/s

time (t) = 3.5 s

final height (h₁) = 8.2 m

initial height (h₀) = 0 m

acceleration due to gravity (g) = 9.8 m/s^{2}

find the power

power = \frac{work done}[time}

and

work done = change in kinetic energy (K.E) + change in potential energy (P.E)

work done = (0.5 mv^{2} - 0.5 mu^{2} ) + ( mgh₁ - mgh₀)

since u and h₀ are zero the work done now becomes

work done = (0.5 mv^{2}) + ( mgh₁ )                    

work done = (0.5 x 810 x 7^{2}) + ( 810 x 9.8 x 8.2)

work done = 84, 936.6 joules

recall that power = \frac{work done}[time}

power = \frac{84,936.6}[3.5}

power = 24,267.6 watts

7 0
1 year ago
Quinn is testing the motion of two projectiles x and y by shooting them from a sling shot. What can we say best describes the mo
Studentka2010 [4]

Explanation:

            A projectile motion may be defined as that form of a motion that is experienced by an object or a particle which is projected near the surface of the Earth and the particle moves along the curved path  subjected to gravity force only.

           Thus a projectile motion is always acted upon by a constant acceleration due to gravity in the down ward direction.

             In the context, Quinn shoots two particle x and y from his sling shot and he observes that both his projectiles travels in a parabola curve in the air. Both the object x and y touches the ground a distance apart from him which is known as the range and it depends upon the velocity of the projectile. Both the projectile reaches a maximum height and then drop on the ground in a parabola shape.

3 0
1 year ago
Read 2 more answers
In an isolated system, the total heat given off by warmer substances equals the total heat energy gained by cooler substances. N
galina1969 [7]

Answer:

The temperature of the cooler substance was close to the room temperature. Therefore, the system experienced less change

Explanation:

Generally, in a closed system containing two bodies at different temperatures, there is a flow of heat energy from the body at a higher temperature to the body at a lower temperature. The effect is more significant when there is a large temperature difference between the bodies. However, if the temperature difference is small or insignificant, the change will be less.

3 0
1 year ago
A snowball is melting at a rate of 324π mm3/s. At what rate is the radius decreasing when the volume of the snowball is 972π mm3
Oduvanchick [21]

Answer:

The radius is decreasing at 4 mm/s

Explanation:

The volume of a sphere is:

V = 4/3*\pi *r^3   So, when the volume is 972π mm^3 the radius r is:

r = 9mm

Now, the change rate is given by the derivative:

dV/dt = 4/3*\pi *3*r^2*dr/dt  

Where: dV/dt = -324π mm^2/s

            r = 9mm

Solving for dr/dt:

dr/dt = -4mm/s

5 0
1 year ago
80 foot-pounds of work is needed to move the sofa in Tyler's apartment. Which of the following statements is true?
erastova [34]
D is the correct answer
hop it helped.
3 0
2 years ago
Other questions:
  • If gravity between the Sun and Earth suddenly vanished, Earth would continue moving in
    5·1 answer
  • a closed systems internal energy changes by 178 j as a result of being heated with 658 j of energy. the energy used to do work b
    14·1 answer
  • A neutron star has a mass of 2.0 × 1030 kg (about the mass of our sun) and a radius of 5.0 × 103 m (about the height of a good-s
    14·2 answers
  • Which structure contains the lowest amount of oxygen?
    5·2 answers
  • Sharks are generally negatively buoyant; the upward buoyant force is less than the weight force. This is one reason sharks tend
    6·1 answer
  • __________ curves help lessen the effect of the force of the forward motion on your vehicle as it enters the curve.
    12·1 answer
  • A rocket exhausts fuel with a velocity of 1500m/s, relative to the rocket. It starts from rest in outer space with fuel comprisi
    15·2 answers
  • A mass is oscillating horizontally on a spring. At the locations A, B, C, D, and E, photogates are used to measure the speed of
    7·1 answer
  • The fundamental frequency of a resonating pipe is 150 Hz, and the next higher resonant frequencies are 300 Hz and 450 Hz. From t
    11·1 answer
  • At a drag race, a jet car travels 1/4 mile in 5.2 seconds. What is the final speed of the
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!