Answer:
a.) F = 3515 N
b.) F = 140600 N
Explanation: given that the
Mass M = 74kg
Initial velocity U = 7.6 m/s
Time t = 0.16 s
Force F = change in momentum ÷ time
F = (74×7.6)/0.16
F = 3515 N
b.) If Logan had hit the concrete wall moving at the same speed, his momentum would have been reduced to zero in 0.0080 seconds
Change in momentum = 74×7.6 + 74×7.6
Change in momentum = 562.4 + 562.4 = 1124.8 kgm/s
F = 1124.8/0.0080 = 140600 N
Answer:
149.34 Giga meter is the distance d from the center of the sun at which a particle experiences equal attractions from the earth and the sun.
Explanation:
Mass of earth = m = 
Mass of Sun = M = 333,000 m
Distance between Earth and Sun = r = 149.6 gm = 1.496\times 10^{11} m[/tex]
1 giga meter = 
Let the mass of the particle be m' which x distance from Sun.
Distance of the particle from Earth = (r-x)
Force between Sun and particle:

Force between Sun and particle:

Force on particle is equal:
F = F'

= ±577.06
Case 1:

x = 
Acceptable as the particle will lie in between the straight line joining Earth and Sun.
Case 2:

x = 
Not acceptable as the particle will lie beyond on line extending straight from the Earth and Sun.
<span>When Kevin pulls his cotton shirt off his body, the electrons get transferred from the shirt (in form of static charges i.e. electrons to the body. So, the shirt becomes positively charged and Kevin’s body becomes negatively charged.
As a result of charge transfer from the shirt to the body, we can hear a crackling sound. or if observed in dark, a sparkle can be seen.</span>
The man ran <u>4252.5 meters.</u>
Why?
To solve the problem, we need to divide the exercise into two movements, the first on while the was running at 4.5 m/s for 15 min, and then, while he was slowing down (going up because of the hill).
First movement: Running at 4.5 m/s for 15 min.
We need convert from minutes to seconds,

Now, calculating the distance covered for the first movement, we have:

So, we know that the man covered 4050m for the first movement, it will be our initial position for the second movement.
Second movement: acceleration -0.05m/s^2 (because he's slowing down) for 90 seconds, at 4.5m/s.

Hence, we have that he ran 4252.5 m.
Have a nice day!
Answer:

Explanation:
The strength of an electric field E produced by a single charge Q at a distance d from it is given by the formula:
, where K represents the Coulomb constant.
Since the electric field E is derived from the Coulomb Force per unit charge using a positive test charge, the field's units will be in units of Newtons/Coulomb, and be the formula for the Coulomb electric force between to charges (Q1 and Q2),

but modified with only one charge showing in the numerator of the expression.