Answer:
Here's what I get
Explanation:
(g) Titration curves
I can't draw two curves on the same graph, but I can draw two separate curves for you.
The graph in part (d) had an equivalence point at 20 mL.
In the second titration, the NaOH was twice as concentrated, so the volume to equivalence point would be half as much — 10 mL.
The two titration curves are below.
(h) Evidence of reaction
HCl and NaOH are both colourless.
They don't evolve a gas or form a precipitate when they react.
The student probably noticed that the Erlenmeyer flask warmed up — a sign of a chemical change.
Answer: The weight/weight % or percent by mass of the solute is 5.41 %.
Explanation:
Mass of the sodium sulfate,w = 9.74 g
Volume of the water = 165 mL
Density of the water = 1 g/mL

Mass of the water =
Mass of the solution, W:
Mass of solute + Mass of solvent =9.47 g + 165 g=174.47 g

The weight/weight % or percent by mass of the solute is 5.41 %.
Missing table!! write the elements with the first letter of the symbol with Upper Caps letters!!!
http://www.chemeddl.org/services/moodle/media/QBank/GenChem/Tables/EStandardTable.htm
<span>Ni2+ +Pb(s) → Ni(s) + Pb2+
</span>The potential of the oxidation of Pb(s) --> Pb2+(aq) is 0.126 V
The potential of the reduction go Ni2+(aq) --> Ni(s) is -0.25 V
<span>Add the two together and the potential for the reaction is -0.124 V (NO SPONTANEOUS THE SIGN IS NEGATIVE)
</span><span>au3+ + al(s) → au(s) + al3+Au3+(aq) -> Au(s) +1.5 VAl -> Al3+ +1.66VV= 3.16 (SPONTANEOUS THE SIGN OF THE PONTENTIAL IS POSITIVE)</span><span>Sr2+ + Sn(s) → Sr(s) + Sn2+
</span>
Sr2+(aq) + 2 e– <span> Sr(s) V= -2.89V
</span>Sn -> Sn2+ V= 0.14 V
V= -2.75 V (no spontaneous)
<span>Fe2+ + Cu(s) → Fe(s) + Cu2+
</span>Fe2+(aq) + 2 e–<span> </span><span> Fe(s) V= -0.44 V
</span>Cu -> C2+ V = - 0.337V
V= - 0.777V (no spontaneous)
Answer:
b
. Irradiated food is shown to not be radioactive.
Explanation:
If it can be proven that irradiated food is not radioactive, then it will effective dispute the idea that irradiated food are less safe to eat.
- An irradiated food is one in which ionizing radiations have been employed to improve food quality.
- Thus, bacteria and other food spoilers can be exterminated from the food.
- Most irradiated food do not contain radiation and are fit for consumption.
If it can be proven, that this is true, then it will challenge the idea that irradiated foods are not safe.
Using charles law
v1/t1=v2/t2
v1=49ml
v2=74
t1=7+273=280k
t2=?
49/280=74/t2
0.175=74/t2 cross multiply
0.175t2=74
t2=74/0.175
t2=422k or 149celcius