answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mazyrski [523]
2 years ago
14

The random variable X measures the concentration of ethanol in a chemical solution, and the random variable Y measures the acidi

ty of the solution. They have a joint probability density function f (x, y) = A (20 - x - 2y), 0 lessthanorequalto x lessthanorequalto 5, 0 lessthanorequalto y lessthanorequalto 5 and f (x, y) = 0 elsewhere. (a) What is the value of A? (b) What is P (1 lessthanorequalto X lessthanorequalto 2, 2 lessthanorequalto Y lessthanorequalto 3)? (c) Construct the marginal probability density functions for X and Y. (d) Are the ethanol concentration and the acidity independent? (e) What are the expectation and the variance of the ethanol concentration? (f) What the expectation and the variance of the acidity? (g) If the ethanol concentration is 3, what is the conditional probability density function of the acidity? (h) What is the covariance between the ethanol concentration and the acidity? (i) What is the correlation between the ethanol concentration and the acidity?
Mathematics
1 answer:
docker41 [41]2 years ago
3 0

Answer:

My explanation is too long so, I had to limit my characters

Find answers within explanation.

Step-by-step explanation:

Given

f (x, y) = A (20 - x - 2y), 0 ≤ x ≤ 5, 0 ≤ y ≤ 5 and f (x, y) = 0 elsewhere.

(a) To solve for A,the joint probability density function must satisfy the following condition

∫∫f(x,y) = 1

So, we have

∫∫ A (20 - x - 2y) dydx.{0,5}{0,5} = 1

First, we integrate with respect to y

∫[∫A (20 - x - 2y){0,5}dy]dx{0,5} = 1

A∫[∫ (20 - x - 2y){0,5}dy]dx{0,5} = 1

A∫[(20y - xy - y²){0,5}] dx {0,5} = 1

A∫[(20(5) - x(5) - (5)²)] dx{0,5} = 1

A∫[(100 - 5x - 25)] dx {0,5} = 1

A∫[(75- 5x)] dx {0,5} = 1

Then we differentiate with respect to x

A[(75x- 5x²/2)] {0,5} = 1

A[(75(5)- 5(5)²/2)] = 1

A(375 - 125/2)= 1

625A/2 = 1

625A = 2

A = 2/625

b. Here we have

∫∫ A (20 - x - 2y) dydx.{2,3}{1,2} where A = 2/625

First, we integrate with respect to y

∫[∫A (20 - x - 2y){2,3}dy]dx{1,2}

A∫[∫ (20 - x - 2y){2,3}dy]dx{1,2}

A∫[(20y - xy - y²){2,3}] dx {1,2}

A∫[(20(3) - x(3) - (3)²) - (20(2) - x(2) - (2)²] dx{1,2}

A∫[(60 - 3x - 9) - (40 - 2x - 4)] dx {1,2}

A∫[(20- x - 5)] dx {1,2}

A∫[(15 - x)] dx {1,2}

Then we differentiate with respect to x

A[(15x- x²/2)] {1,2}

A[(15(2)- (2)²/2) - (15(1) - 1²/2]

A(28 - 29/2)

A(27/2) ------ Substitute 2/625 for A

2/625 * 27/2

27/625

So, P (1 ≤ X ≤ 2, 2 ≤ Y ≤ 3) = 27/625

c. Calculating the marginal probability density function for X;

This is given by

fx(x) = ∫ f(x,y) dy

Where f(x,y) = f (x, y) = A (20 - x - 2y), 0 ≤ y ≤ 5 and A = 2/625

So, we have

fx(x) = ∫ A (20 - x - 2y) dy {0,5}

A ∫(20 - x - 2y) dy {0,5}

Integrate with respect to y

A (20y - xy - y²) {0,5}

A(20(5) - x(5) - 5²)

A(100 - 5x - 25)

A(75-5x)

A * 5(15-x)

5A(15-x)

5 * 2/625 * (15 - x)

2/125 * (15 - x)

(30 - 2x)/125

So, fx(x) = (30 - 2x)/125

Calculating the marginal probability density function for Y;

This is given by

fy(y) = ∫ f(x,y) dx

Where f(x,y) = f (x, y) = A (20 - x - 2y), 0 ≤ x ≤ 5 and A = 2/625

So, we have

fy(y) = ∫ A (20 - x - 2y) dx {0,5}

A ∫(20 - x - 2y) dx {0,5}

Integrate with respect to x

A (20x - x²/2 - 2xy) {0,5}

A(20(5) - 5²/2 - 2*5y)

A(100 - 25/2 - 10y)

A(175/2 - 10y)

A * (175 - 20y)/2

2/625 * (175 - 20y)/2

(175 - 20y)/625

(35 - 4y)/125

So, fy(y) = (35 - 4y)/125

d. If the product of the marginal distribution of variables X and Y emails the joint probability density function, then they are independent.

Mathematically, f(x,y) = fx(x) * fy(y) for all values of x and y

Let x∈(0,5) and y∈(0,5)

Then

f(x,y) ≠ fx(x) * fy(y)

So, x and y are not independent

e. Here, we're asked to find E(x) and Var(x)

Calculating E(x)

E(x) = ∫xfx(x) dx

Where fx(x) = (30 - 2x)/125 for 0 ≤ x ≤ 5

So, E(x) = ∫x (30 - 2x)/125 dx {0,5}

1/125 ∫ x(30-2x) dx {0,5}

1/125∫30x - 2x² dx {0,5}

1/125 (15x² - 2x³/3) {0,5}

1/125(15(5)² - 2(5)³/3)

1/125(375-250/3)

1/125(875)

7/3

So, E(x) = 7/3

Var(x) = E(x²) - (E(x))²

Calculating E(x²)

E(x²) = ∫x²fx(x) dx

Where fx(x) = (30 - 2x)/125 for 0 ≤ x ≤ 5

So, E(x²) = ∫x² (30 - 2x)/125 dx {0,5}

1/125 ∫ x ²(30-2x) dx {0,5}

1/125∫30x² - 2x³ dx {0,5}

1/125 (10x³ - ½x⁴) {0,5}

1/125(10(5)³ - ½(5)⁴)

1/125(1250 - 625/2)

1/125(1875/2)

E(x²) = 15/2

So,Var(x) = E(x²) - (E(x))² becomes

Var(x) = 15/2 - (7/3)²

Var(x) = 15/2 - 49/9

Var(x) = (135 - 98)/9

Var(x) = 37/18

f. Here, we're asked to find E(y) and Var(y)

Calculating E(y)

E(y) = ∫yfy(y) dy

Where fy(y) = (35 - 4y)/125 for 0 ≤ y ≤ 5

So, E(y) = ∫y (35 - 4y)/125 dy {0,5}

1/125 ∫ y(35 - 4y) dy {0,5}

1/125∫35y - 4y² dy {0,5}

1/125 (35y²/2 - 4y³/3) {0,5}

1/125(35(5)²/2 - 4(5)³/3)

1/125(875/2 - 500/3)

7/2 - 4/3

(21 - 8)/6

So, E(y) = 13/6

Var(y) = E(y²) - (E(y))²

Calculating E(x²)

E(y²) = ∫y²fy(y) dy

Where fy(y) = (35 - 4y)/125 for 0 ≤ y ≤ 5

So, E(y²) = ∫y² (35 - 4y)/125 dy {0,5}

1/125 ∫ y²(35 - 4y) dy {0,5}

1/125∫35y² - 4y³ dy {0,5}

1/125 (35y³/3 - y⁴) {0,5}

1/125(35(5)³/3 - (5)⁴)

1/125(4375/3 - 625)

35/3 - 5

(35 - 15)/3

E(y²) = 20/3

So,Var(y) = E(y²) - (E(y))² becomes

Var(y) = 20/3 - (13/6)²

Var(y) = 71/36

g. Here, we're asked to solve for

fy|x = x(y).

This can be solved using the following

fy|x = x(y) = f(x,y)/fx(x)

So, fy|x = x(y) = f(x,y)/fx(x)

fy|x = 3(y) = f(3,y)/fx(3)

Let y∈(0,5); so, we have

fy|x = x(y) = A(20-3-2y)/(30-(2*3)/125)

fy|x = x(y) = 125A(17-2y)/24

Substitute 2/625 for A

fy|x = x(y) = (17-2y)/60

h. Formula for Covariance is

Cov(X,Y) = E(XY) - E(X)E(Y)

Calculating E(XY)

E(XY) = ∫∫xy f(x,y) dy dx

∫∫ xy * A(20-x-2y) dy dx {0,5}{0,5}

A∫∫ xy * (20-x-2y) dy dx {0,5}{0,5}

A∫∫ 20xy - x²y -2xy² dy dx {0,5}{0,5}

First, we integrate with respect to y

A∫10xy² - x²y²/2 - 2xy³/3 {0,5} dx {0,5}

A∫10x(5²) - x²(5²)/2 - 2x(5³)/3 dx {0,5}

A∫250x - 25x²/2 - 250x/3 dx {0,5}

A∫500x/3 - 25x²/2 dx {0,5}

Then we integrate with respect to x

A(500x²/6 - 25x³/6) {0,5}

A(500(5)²/6 - 25(5)³/6)

A(12500/6 - 3125/6)

A(9375/6)

Substitute 2/625 for A

2/625 * 9375/6

E(XY) = 5

So, Cov(X,Y) = 5 - 7/3*13/6

Cov(X,Y) = -1/18

i. Correlation is calculated as follows;

Cor(x,y) = Cov(x,y)/√(Var(y)*(Var(x)

Cor(x,y) = (-1/18)/√(71/36 *37/18)

Cor(x,y) = -0.0276

You might be interested in
In a regional spelling bee, the 8 finalists consist of 3 boys and 5 girls. Find the number of sample points in the sample space
posledela

Answer: a.) 40320

b.) 336

Step-by-step explanation:

since we have 8 possible positions, with 8 different candidates, then there are 8 possible ways of arranging the first position, 7 possible ways of arranging the Second position, 6 ways of arranging the 3rd position, 5 possible ways od arranging the 4th position, 4 possible ways of arranging the 5th position, 3 possible ways of arranging the 6th position, 2 possible ways of arranging the 7th position and just one way of arranging the 8th position since we have only one person left.

Hence, the Number of possible sample space for different 8 positions is by multiplying all the number of ways we have in our sample space which becomes:

8*7*6*5*4*3*2*1 = 40320.

b.) By the sample space we have, since we've been asked ti arrange for only the firat 3 positions, then we multiply just for the first 3ways of choosing the positions, this becomes:

8*7*6 = 336

5 0
2 years ago
This dot plot is symmetric, and the data set has no extreme values. 2 4 5 6 7 8 9 10 What is the best measure of center for this
Zepler [3.9K]

I think it would be c

5 0
2 years ago
Read 2 more answers
In a bike race: Julie came in ahead of Roger. Julie finished after James. David beat James but finished after Sarah. In what pla
mel-nik [20]

write it out in the order they give

Julie , Roger

James , Julie, Roger

David, James, Julie, Roger

Sarah, David, James, Julie, Roger

David is in 2nd place

5 0
2 years ago
Emma wants to estimate the percentage of people who use public transportation in a city. She surveys 140 individuals and finds t
jolli1 [7]

nmmn,.Answer:

mn,./.,m.mn,.mn,lm

Step-by-step explanation:

lk;lkjhgbnm,jnhgfhjnmjkhgfdedrftgyhjkljhugyft

7 0
2 years ago
Mrs. Dryson is dividing her collection of 52 glass bears into groups of equal numbers. She has 1 bear left over. How many groups
Zepler [3.9K]
It was probably 20 idk
3 0
2 years ago
Other questions:
  • Students in 6 classes displayed below ate the same ratio of cheese pizza slices two pepperoni pizza slices complete the followin
    10·1 answer
  • Amy is biking to school from her father's house and Jeremy is biking to school from his aunt's house. Suppose Amy is moving at a
    12·3 answers
  • Ted creates a box plot using 14, 13, 21, 10, 28, 30, and 35 as the data. Which of the following box plots shows the data accurat
    7·2 answers
  • Use what you know about compound statements to determine if "A piece of paper is an object that can be drawn on " would be consi
    5·2 answers
  • Luiza delivers newspapers in her neighborhood. If you plot the points (−1, 1), (4, 1), (4, −2) and (−1, −2), you will create a r
    13·2 answers
  • NEED HELP ASAP!!!!!!!!!!
    14·1 answer
  • A savings account compounds interest, ata rate of 22%, once a year. George puts $750 in the account as the principal. How can ge
    11·1 answer
  • James is the manager at an entertainment arena that draws an average 7,000 patrons per event. Each ticket taker can process 350
    14·1 answer
  • 4The Monarch Butterfly is essential to the pollination process of many native and farmed North American plants. These butterflie
    15·1 answer
  • Identify the range of the function shown in the graph.<br>​
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!