answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mazyrski [523]
2 years ago
14

The random variable X measures the concentration of ethanol in a chemical solution, and the random variable Y measures the acidi

ty of the solution. They have a joint probability density function f (x, y) = A (20 - x - 2y), 0 lessthanorequalto x lessthanorequalto 5, 0 lessthanorequalto y lessthanorequalto 5 and f (x, y) = 0 elsewhere. (a) What is the value of A? (b) What is P (1 lessthanorequalto X lessthanorequalto 2, 2 lessthanorequalto Y lessthanorequalto 3)? (c) Construct the marginal probability density functions for X and Y. (d) Are the ethanol concentration and the acidity independent? (e) What are the expectation and the variance of the ethanol concentration? (f) What the expectation and the variance of the acidity? (g) If the ethanol concentration is 3, what is the conditional probability density function of the acidity? (h) What is the covariance between the ethanol concentration and the acidity? (i) What is the correlation between the ethanol concentration and the acidity?
Mathematics
1 answer:
docker41 [41]2 years ago
3 0

Answer:

My explanation is too long so, I had to limit my characters

Find answers within explanation.

Step-by-step explanation:

Given

f (x, y) = A (20 - x - 2y), 0 ≤ x ≤ 5, 0 ≤ y ≤ 5 and f (x, y) = 0 elsewhere.

(a) To solve for A,the joint probability density function must satisfy the following condition

∫∫f(x,y) = 1

So, we have

∫∫ A (20 - x - 2y) dydx.{0,5}{0,5} = 1

First, we integrate with respect to y

∫[∫A (20 - x - 2y){0,5}dy]dx{0,5} = 1

A∫[∫ (20 - x - 2y){0,5}dy]dx{0,5} = 1

A∫[(20y - xy - y²){0,5}] dx {0,5} = 1

A∫[(20(5) - x(5) - (5)²)] dx{0,5} = 1

A∫[(100 - 5x - 25)] dx {0,5} = 1

A∫[(75- 5x)] dx {0,5} = 1

Then we differentiate with respect to x

A[(75x- 5x²/2)] {0,5} = 1

A[(75(5)- 5(5)²/2)] = 1

A(375 - 125/2)= 1

625A/2 = 1

625A = 2

A = 2/625

b. Here we have

∫∫ A (20 - x - 2y) dydx.{2,3}{1,2} where A = 2/625

First, we integrate with respect to y

∫[∫A (20 - x - 2y){2,3}dy]dx{1,2}

A∫[∫ (20 - x - 2y){2,3}dy]dx{1,2}

A∫[(20y - xy - y²){2,3}] dx {1,2}

A∫[(20(3) - x(3) - (3)²) - (20(2) - x(2) - (2)²] dx{1,2}

A∫[(60 - 3x - 9) - (40 - 2x - 4)] dx {1,2}

A∫[(20- x - 5)] dx {1,2}

A∫[(15 - x)] dx {1,2}

Then we differentiate with respect to x

A[(15x- x²/2)] {1,2}

A[(15(2)- (2)²/2) - (15(1) - 1²/2]

A(28 - 29/2)

A(27/2) ------ Substitute 2/625 for A

2/625 * 27/2

27/625

So, P (1 ≤ X ≤ 2, 2 ≤ Y ≤ 3) = 27/625

c. Calculating the marginal probability density function for X;

This is given by

fx(x) = ∫ f(x,y) dy

Where f(x,y) = f (x, y) = A (20 - x - 2y), 0 ≤ y ≤ 5 and A = 2/625

So, we have

fx(x) = ∫ A (20 - x - 2y) dy {0,5}

A ∫(20 - x - 2y) dy {0,5}

Integrate with respect to y

A (20y - xy - y²) {0,5}

A(20(5) - x(5) - 5²)

A(100 - 5x - 25)

A(75-5x)

A * 5(15-x)

5A(15-x)

5 * 2/625 * (15 - x)

2/125 * (15 - x)

(30 - 2x)/125

So, fx(x) = (30 - 2x)/125

Calculating the marginal probability density function for Y;

This is given by

fy(y) = ∫ f(x,y) dx

Where f(x,y) = f (x, y) = A (20 - x - 2y), 0 ≤ x ≤ 5 and A = 2/625

So, we have

fy(y) = ∫ A (20 - x - 2y) dx {0,5}

A ∫(20 - x - 2y) dx {0,5}

Integrate with respect to x

A (20x - x²/2 - 2xy) {0,5}

A(20(5) - 5²/2 - 2*5y)

A(100 - 25/2 - 10y)

A(175/2 - 10y)

A * (175 - 20y)/2

2/625 * (175 - 20y)/2

(175 - 20y)/625

(35 - 4y)/125

So, fy(y) = (35 - 4y)/125

d. If the product of the marginal distribution of variables X and Y emails the joint probability density function, then they are independent.

Mathematically, f(x,y) = fx(x) * fy(y) for all values of x and y

Let x∈(0,5) and y∈(0,5)

Then

f(x,y) ≠ fx(x) * fy(y)

So, x and y are not independent

e. Here, we're asked to find E(x) and Var(x)

Calculating E(x)

E(x) = ∫xfx(x) dx

Where fx(x) = (30 - 2x)/125 for 0 ≤ x ≤ 5

So, E(x) = ∫x (30 - 2x)/125 dx {0,5}

1/125 ∫ x(30-2x) dx {0,5}

1/125∫30x - 2x² dx {0,5}

1/125 (15x² - 2x³/3) {0,5}

1/125(15(5)² - 2(5)³/3)

1/125(375-250/3)

1/125(875)

7/3

So, E(x) = 7/3

Var(x) = E(x²) - (E(x))²

Calculating E(x²)

E(x²) = ∫x²fx(x) dx

Where fx(x) = (30 - 2x)/125 for 0 ≤ x ≤ 5

So, E(x²) = ∫x² (30 - 2x)/125 dx {0,5}

1/125 ∫ x ²(30-2x) dx {0,5}

1/125∫30x² - 2x³ dx {0,5}

1/125 (10x³ - ½x⁴) {0,5}

1/125(10(5)³ - ½(5)⁴)

1/125(1250 - 625/2)

1/125(1875/2)

E(x²) = 15/2

So,Var(x) = E(x²) - (E(x))² becomes

Var(x) = 15/2 - (7/3)²

Var(x) = 15/2 - 49/9

Var(x) = (135 - 98)/9

Var(x) = 37/18

f. Here, we're asked to find E(y) and Var(y)

Calculating E(y)

E(y) = ∫yfy(y) dy

Where fy(y) = (35 - 4y)/125 for 0 ≤ y ≤ 5

So, E(y) = ∫y (35 - 4y)/125 dy {0,5}

1/125 ∫ y(35 - 4y) dy {0,5}

1/125∫35y - 4y² dy {0,5}

1/125 (35y²/2 - 4y³/3) {0,5}

1/125(35(5)²/2 - 4(5)³/3)

1/125(875/2 - 500/3)

7/2 - 4/3

(21 - 8)/6

So, E(y) = 13/6

Var(y) = E(y²) - (E(y))²

Calculating E(x²)

E(y²) = ∫y²fy(y) dy

Where fy(y) = (35 - 4y)/125 for 0 ≤ y ≤ 5

So, E(y²) = ∫y² (35 - 4y)/125 dy {0,5}

1/125 ∫ y²(35 - 4y) dy {0,5}

1/125∫35y² - 4y³ dy {0,5}

1/125 (35y³/3 - y⁴) {0,5}

1/125(35(5)³/3 - (5)⁴)

1/125(4375/3 - 625)

35/3 - 5

(35 - 15)/3

E(y²) = 20/3

So,Var(y) = E(y²) - (E(y))² becomes

Var(y) = 20/3 - (13/6)²

Var(y) = 71/36

g. Here, we're asked to solve for

fy|x = x(y).

This can be solved using the following

fy|x = x(y) = f(x,y)/fx(x)

So, fy|x = x(y) = f(x,y)/fx(x)

fy|x = 3(y) = f(3,y)/fx(3)

Let y∈(0,5); so, we have

fy|x = x(y) = A(20-3-2y)/(30-(2*3)/125)

fy|x = x(y) = 125A(17-2y)/24

Substitute 2/625 for A

fy|x = x(y) = (17-2y)/60

h. Formula for Covariance is

Cov(X,Y) = E(XY) - E(X)E(Y)

Calculating E(XY)

E(XY) = ∫∫xy f(x,y) dy dx

∫∫ xy * A(20-x-2y) dy dx {0,5}{0,5}

A∫∫ xy * (20-x-2y) dy dx {0,5}{0,5}

A∫∫ 20xy - x²y -2xy² dy dx {0,5}{0,5}

First, we integrate with respect to y

A∫10xy² - x²y²/2 - 2xy³/3 {0,5} dx {0,5}

A∫10x(5²) - x²(5²)/2 - 2x(5³)/3 dx {0,5}

A∫250x - 25x²/2 - 250x/3 dx {0,5}

A∫500x/3 - 25x²/2 dx {0,5}

Then we integrate with respect to x

A(500x²/6 - 25x³/6) {0,5}

A(500(5)²/6 - 25(5)³/6)

A(12500/6 - 3125/6)

A(9375/6)

Substitute 2/625 for A

2/625 * 9375/6

E(XY) = 5

So, Cov(X,Y) = 5 - 7/3*13/6

Cov(X,Y) = -1/18

i. Correlation is calculated as follows;

Cor(x,y) = Cov(x,y)/√(Var(y)*(Var(x)

Cor(x,y) = (-1/18)/√(71/36 *37/18)

Cor(x,y) = -0.0276

You might be interested in
The trajectory of a golf ball in a chip from the rough has a parabolic pattern. The height, in feet, of the ball is given by the
frez [133]

Answer:

maximum height of 17.07 feet about 10.67 feet from the club

     returns to the ground 21.33 feet away

Step-by-step explanation:

8 0
2 years ago
Rui is a professional deep water free diver.
Vladimir [108]
The correct question is 
<span>Rui is a professional deep water free diver. His altitude (in meters relative to sea level), xxx seconds after diving, is modeled by: d(x)=1/2x^2 -10x What is the lowest altitude Rui will reach?

we have that
</span>d(x)=(1/2)x² -10x

we know that
the function is quadratic (a parabola) 
so
<span>the lowest altitude (depth) is the vertex
</span>
using a graph tool
see the attached figure

the vertex is the point  (10,-50)
that means
His altitude (in meters relative to sea level), 10 seconds after diving is 50 meters under the sea level

therefore
the answer is
<span>the lowest altitude is 50 meters under the sea level</span>

5 0
2 years ago
Read 2 more answers
A fuel is purified by passing it through a clay pipe. Each foot of the clay pipe removes a fixed percentage of impurities in the
creativ13 [48]
The amount of pollutants.
8 0
2 years ago
A pendulum is set swinging. its first oscillation is through 30 and each succeeding oscillation is through 95% of the angle of t
Marat540 [252]

<u>Answer-</u>

<em>After 76 swings</em><em> the angle through which it swings less than 1°</em>

<u>Solution-</u>

From the question,

Angle of the first of swing = 30° and then each succeeding oscillation is through 95% of the angle of the one before it.

So the angle of the second swing = (30\times \frac{95}{100})^{\circ}

Then the angle of third swing = (30\times (\frac{95}{100})^2)^{\circ}

So, this follows a Geometric Progression.

(30,\ 30\cdot \frac{95}{100},\ 30\cdot (\frac{95}{100})^2............,0)

a = The initial term = 30

r = Common ratio = \frac{95}{100}

As we have to find the number swings when the angle swept by the pendulum is less than 1°.

So we have the nth number is the series as 1, applying the formula

T_n=ar^{n-1}

Putting the values,

\Rightarrow 1=30(\frac{95}{100})^{n-1}

\Rightarrow \frac{1}{30} =(\frac{95}{100})^{n-1}

Taking logarithm of both sides,

\Rightarrow \log \frac{1}{30} =\log (\frac{95}{100})^{n-1}

\Rightarrow \log \frac{1}{30} =(n-1)\log (\frac{95}{100})

\Rightarrow -1.5=(n-1)(-0.02)

\Rightarrow 1.5=(n-1)(0.02)

\Rightarrow n-1=\dfrac{1.5}{0.02}

\Rightarrow n-1=75

\Rightarrow n=76

Therefore, after 76 swings the angle through which it swings less than 1°

8 0
2 years ago
A hospital takes record of any birth that occurs there every day. On one day, the hospital reports that 35 of the 62 babies born
andre [41]

Answer:

Step-by-step explanation:

7 0
2 years ago
Read 2 more answers
Other questions:
  • A basketball player gets 2 free-throw shots when she is fouled by a player on the opposing team. She misses the first shot 40% o
    15·1 answer
  • Calculate the resistance of a piece of aluminum wire with a diameter of 100 mils and a length of two miles, at 68°F. Hint: Be su
    10·1 answer
  • A person needs to pay TK. 500 to by pencils and TK. X for any additinal unit of pencil.If the cumstomer pays a total of TK. 4700
    5·1 answer
  • Consider functions f and g below.
    10·2 answers
  • Caden has an offer to buy an item with a sticker price of $7400 by paying
    5·1 answer
  • An ideal gas is confined within a closed cylinder at a pressure of 2.026 × 105 Pa by a piston. The piston moves until the volume
    5·1 answer
  • Callan goes for a hike every Saturday. Callan hikes at a rate of 333 miles per hour.
    5·1 answer
  • The radius of a right circular cone is increasing at a rate of 1.4 in/s while its height is decreasing at a rate of 2.1 in/s. At
    8·1 answer
  • Lucy spent 3/5 of her money on a handbag. She spent the remainder on 3 T-shirts which cost $4 each. How much did the handbag cos
    7·1 answer
  • A researcher wishes her patients to try a new medicine for depression. How many different ways can she select 5 patients from 50
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!