<span>pm stands for picometer and picometers are units which can be used to measure really tiny distances. One picometer is equal to 10^{-12} meters. We know that one centimeter is equal to 10^{-2} m so there are 10^2 cm per meter.
We can change the distance d = 115 pm to units of centimeters.
d = (115 pm) x (10^{-12}m / pm) x (10^2 cm / m)
d = 115 x 10^{-10} cm = 1.15 x 10^{-8} cm
The distance in centimeters is 1.15 x 10^{-8} cm</span>
A pure substance or a homogeneous mixture consists of a single phase. A heterogeneous mixture consists of two or more phases. When oil and water are combined, they do not mix evenly, but instead form two separate layers.
The element is Am and since you lose e- there must be a postive charge. Am+6 is the symbol
Molarity is defined as number of moles of solute in 1 L of solution.
Here, 0.1025 g of Cu is reacted with 35 mL of HNO_{3} to produced Cu^{2+} ions.
The balanced reaction will be as follows:
Cu+3HNO_{3}\rightarrow Cu(NO_{3})_{2}+NO_{2}+H_{2}O
From the above reaction, 1 mole of Cu produces 1 mole of Cu^{2+}, convert the mass of Cu into number of moles as follows:
n=\frac{m}{M}
molar mass of Cu is 63.55 g/mol thus,
n=\frac{0.1025 g}{63.55 g/mol}=0.0016 mol
Now, total molarity of solution, after addition of water is 200 mL or 0.2 L can be calculated as follows:
M=\frac{n}{V}=\frac{0.0016 mol}{0.2 L}=0.008 mol/L=0.008 M
Thus, molarity of Cu^{2+} is 0.008 M.
Answer:
The solubility of X in water at 17°C is 0.110 g/mL.
Explanation:
The water of a rock pool lined with mineral crystals is a <em>saturated solution</em> of said mineral, this means the concentration of X in those 36 mL is the solubility of compound X in water at 17 °C.
- This means<u> it is possible to calculate said solubility</u>.
The dilution of the sample is not relevant, nor is that 500 mL volume. What's important is that 3.96 g of X form a saturated solution with 36.0 mL of water, so the solubility is:
- 3.96 g / 36.0 mL = 0.110 g/mL