In a crystal of calcium chloride the chlorine atoms is two times more than calcium atoms.
In the compound potassium nitrate (KNO3), the atoms within the nitrate ion are held together with COVALENT bonding, and the potassium ion and nitrate ion are held together by IONIC bonding.
A covalent bond, also called a molecular bond, is a chemical bond that involves the sharing of electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. Covalent bond is formed between two non-metals.
Ionic bonds form when one atom gives up one or more electrons to another atom. It is the complete transfer of valence electron(s) between oppositely charged atoms. Ionic bond is formed between metal (electropositive element) and non-metal(electronegative element)
In nitrate ions the Nitrogen (N) and Oxygen (O) both are non-metals and it involves the sharing of electron pairs between N and O atoms, so the bonding in Nitrate (
) ion is covalent bonding.
In potassium nitrate , Potassium (K) is a metal and Nitrate (
) ion is non-metal and it involves the complete transfer of valence electron between oppositely charged atoms (K+) and (
). So the bonding between Potassium and Nitrate is Ionic bonding.
NOTE : Bonding between Non-metals is Covalent bonding.
Bonding between Metal and Non-metals is Ionic bonding.
Answer:
d. K<1 E∘cell is negative
Explanation:
Since E⁰ = negative , ΔG = -nFE⁰ = -nF -ve = +ve.
Also, ΔG = -RTlnK
K = exp(-RTΔG)
Since ΔG = +ve, -RTΔG = -ve
K = 1/exp(RTΔG) < 1.
So our answer is E⁰ cell is negative and K < 1
Answer:
denotes the molar hydrogen ion concentration
Explanation:
Answer:
Ionic, metal, organic
Explanation:
In this case, we have to analyze each compound:
-) 
In this compound, we have a non-metal atom (Cl) and a metal atom (Ca) . So, we will have a high electronegativity difference between these atoms, With this in mind, we will have an ionic bond. Ions can be produced:

The cation would be
and the anion is
. So, we will have an <u>ionic compound.</u>
-) 
In this case, we have a single atom. If we check the periodic table we will find this atom in the transition metals section (in the middle of the periodic table). So, this indicates that Cu (Copper) is a <u>metal.</u>
-) 
In this molecule, we have single bonds between carbon and hydrogen. The electronegativity difference between C and H are not high enough to produce ions. So, with this in mind, we will have covalent bonds. This is the main characteristic of <u>organic compounds. </u> (See figure 1)