answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
9966 [12]
2 years ago
4

While driving in the mountains, you notice that when the freeway goes steeply downhill, there are emergency exits every few mile

s. These emergency exits are straight dirt ramps which leave the freeway and are sloped uphill. They are designed to stop trucks and cars that lose their brakes on the downhill stretches of the freeway even if the road is covered in ice. You are curious, so you stop at the next emergency road. You estimate that the road rises at an angle of 15 degrees from the horizontal and is about 55 yards (165 ft) long.
What is the maximum speed of a truck that you are sure will be stopped by this road, even if the frictional force of the road surface is negligible?
Physics
1 answer:
Ymorist [56]2 years ago
4 0

Answer:

v \approx 52.421\,\frac{ft}{s}

Explanation:

The maximum velocity can be determined by the use of the Principle of Energy Conservation:

\frac{1}{2}\cdot m_{truck}\cdot v^{2} = m_{truck}\cdot g \cdot s \cdot \sin \theta

v = \sqrt{2\cdot g \cdot s \cdot \sin \theta}

v = \sqrt{2\cdot (32.174\,\frac{ft}{s^{2}} )\cdot (165\,ft)\cdot \sin 15^{\textdegree}}

v \approx 52.421\,\frac{ft}{s}

You might be interested in
There is an electromagnetic wave traveling in the -z direction in a standard right-handed coordinate system. What is the directi
wlad13 [49]

Answer: The direction of the electric field, E→, is pointed in the +y direction.

Explanation:

One can use the right hand rule to illustrate the direction of travel of an electromagnetic and thereby get the directions of the electric field, magnetic field and direction of travel of the wave.

The right hand rule states that the direction of the thumb indicate the direction of travel of the electromagnetic wave (<em>in this case the -z direction</em>) and the curling of the fingers point in the direction of the magnetic field  B→ (<em>in this case the +x direction</em>), therefore, the electric field direction E→ is in the direction of the fingers which would be pointed towards the +y direction.

6 0
2 years ago
In certain cases, using both the momentum principle and energy principle to analyze a system is useful, as they each can reveal
SpyIntel [72]

Answer:

A) F_g = 26284.48 N

B) v = 7404.18 m/s

C) E = 19.19 × 10^(10) J

Explanation:

We are given;

Mass of satellite; m = 3500 kg

Mass of the earth; M = 6 x 10²⁴ Kg

Earth circular orbit radius; R = 7.3 x 10⁶ m

A) Formula for the gravitational force is;

F_g = GmM/r²

Where G is gravitational constant = 6.67 × 10^(-11) N.m²/kg²

Plugging in the relevant values, we have;

F_g = (6.67 × 10^(-11) × 3500 × 6 x 10²⁴)/(7.3 x 10⁶)²

F_g = 26284.48 N

B) From the momentum principle, we have that the gravitational force is equal to the centripetal force.

Thus;

GmM/r² = mv²/r

Making v th subject, we have;

v = √(GM/r)

Plugging in the relevant values;

v = √(6.67 × 10^(-11) × 6 x 10²⁴)/(7.3 x 10⁶))

v = 7404.18 m/s

C) From the energy principle, the minimum amount of work is given by;

E = (GmM/r) - ½mv²

Plugging in the relevant values;

E = [(6.67 × 10^(-11) × 3500 × 6 × 10²⁴)/(7.3 x 10⁶)] - (½ × 3500 × 7404.18)

E = 19.19 × 10^(10) J

5 0
2 years ago
Heat engines were first envisioned and built during the industrial revolution. Explain the thermodynamics of a heat engine comme
Artyom0805 [142]

Heat engines were developed during industrial revolution.

Generally a heat engine contains three parts i.e source, sink and working substance.

The source of a heat engine is present at a higher temperature as compared to the sink. Due to the temperature difference, the heat will flow from source to sink through working substance.

Let us consider  T_{1}\ and\ T_{2} are the temperature of source and sink.

As the source is at higher temperature as compared to sink, heat will flow from source to sink.

Let\ Q_{1}\ and\ Q_{2} are the heat provided by source and heat rejected to sink.

Hence, the work done by the working substance will be -

                                                W\ =\ Q_{1}-Q_{2}

The efficiency of a heat engine is defined as the ratio of output to the input energy.

Here output = workdone [W]

Hence, the efficiency of a heat engine is calculated as -

                     Efficiency\ [\eta]=\frac{W}{Q_{1}}

                                        \eta\ =\frac{Q_{1}- Q_{2}} {Q_{1}}

                                               =\ 1-\frac{Q_{2}} {Q_{1}}

This is the expression for the efficiency of heat engine.

Here, all the heat absorbed by the working substance can not be converted to desired output. The efficiency of a heat engine can not be 100 percent. Some amount of heat is lost in the form of sound and heat due to the friction which is produced due to the relative motion between various parts of the machine.

6 0
2 years ago
Read 2 more answers
A large fraction of the ultraviolet (UV) radiation coming from the sun is absorbed by the atmosphere. The main UV absorber in ou
irakobra [83]

Answer:

λ = 3.2 x 10⁻⁷ m = 320 nm

Explanation:

The relationship between the velocity of electromagnetic waves (UV rays) and the their frequency is:

v = fλ

where,

v = c = speed of the electromagnetic waves (UV rays) = speed of light

c = 3 x 10⁸ m/s

f = frequency of the electromagnetic waves (UV rays) = 9.38 x 10¹⁴ Hz

λ = wavelength of the electromagnetic waves (UV rays) = ?

Therefore, substituting the values in the relation, we get:

3 x 10⁸ m/s = (9.38 x 10¹⁴ Hz)(λ)

λ = (3 x 10⁸ m/s)/(9.38 x 10¹⁴ Hz)

<u>λ = 3.2 x 10⁻⁷ m = 320 nm</u>

So, the radiation of <u>320 nm</u> wavelength is absorbed by Ozone.

3 0
2 years ago
Read 2 more answers
Determine the scalar components Ra and Rb of the force R along the nonrectangular axes a and b. Also determine the orthogonal pr
Liula [17]

Answer: Hello your question is incomplete attached below is the complete question

Ra = 1132 N

Rb = 522.6 N

Pa = 679.7 N

Explanation:

To determine the scalar components Ra

\frac{Ra}{Sin 120^o} = \frac{750}{sin 35^o}  

therefore : Ra = \frac{sin120^o * 750}{sin 35^o} = 1132 N

To determine the scalar component Rb

\frac{Rb}{sin 25^o} = \frac{750}{sin 35^o}

therefore : Rb = \frac{sin 25^o * 750}{sin 35^o}  = 522.6 N

To determine the orthogonal projection Pa of R onto

Pa = 750 cos25^o = 679.7 N

6 0
2 years ago
Other questions:
  • Water is projected from two rubber pipes at the same speed from one at an angle of 30°and from the other at 60°.why are the rang
    6·1 answer
  • Sebuah benda dijatuhkan bebas dari ketinggian 200 m jika grafitasi setempat 10 m/s maka hitunglah kecepatan dan ketinggian benda
    7·1 answer
  • A 1.0 kg brick falls off a ledge of height 44m and lands on the ground at 3.0 s later.
    6·1 answer
  • The short vertical parts adjacent to it also reach into the magnetic field and should experience forces. why can we neglect them
    7·1 answer
  • How does Coulomb's Law and electric charge cause your hair to stand on edge when it is really dry outside and you walk across th
    14·1 answer
  • A mine car, whose mass is 440kg, rolls at a speed of 0.50m/s on ahorizontal track, as the drawing shows. A 150kg chunk of coalha
    13·1 answer
  • You are standing at the midpoint between two speakers, a distance D away from each. The speakers are playing the exact same soun
    7·1 answer
  • A 9.0-V battery moves 20 mC of charge through a circuit running from its positive terminal to its negative terminal. How much en
    7·1 answer
  • A square loop of wire has a perimeter of 4.00 mm and is oriented such that two of its parallel sides form a 13.0 ∘∘ angle with t
    5·1 answer
  • Calculate the true mass (in vacuum) of a piece of aluminum whose apparent mass is 4.5000 kgkg when weighed in air. The density o
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!