Answer:
980 kJ
Explanation:
Work = change in energy
W = mgh
W = (1000 kg/m³ × 5.0 m³) (9.8 m/s²) (20 m)
W = 980,000 J
W = 980 kJ
The pump does 980 kJ of work.
Answer: 8.1 x 10^24
Explanation:
I(t) = (0.6 A) e^(-t/6 hr)
I'll leave out units for neatness: I(t) = 0.6e^(-t/6)
If t is in seconds then since 1hr = 3600s: I(t) = 0.6e^(-t/(6 x 3600) ).
For neatness let k = 1/(6x3600) = 4.63x10^-5, then:
I(t) = 0.6e^(-kt)
Providing t is in seconds, total charge Q in coulombs is
Q= ∫ I(t).dt evaluated from t=0 to t=∞.
Q = ∫(0.6e^(-kt)
= (0.6/-k)e^(-kt) evaluated from t=0 to t=∞.
= -(0.6/k)[e^-∞ - e^-0]
= -0.6/k[0 - 1]
= 0.6/k
= 0.6/(4.63x10^-5)
= 12958 C
Since the magnitude of the charge on an electron = 1.6x10⁻¹⁹ C, the number of electrons is 12958/(1.6x10^-19) = 8.1x10^24 to two significant figures.
Answer:
n = 2.06 moles
Explanation:
The absolute pressure at depth of 27 inches can be calculated by:
Pressure = Pressure read + Zero Gauge pressure
Zero Gauge pressure = 14.7 psi
Pressure read = 480 psi
Total pressure = 480 psi + 14.7 psi = 494.7 psi
P (psi) = 1/14.696 P(atm)
So, Pressure = 33.66 atm
Temperature = 25°C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (25 + 273.15) K = 298.15 K
T = 298.15 K
Volume = 1.50 L
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
33.66 atm × 1.50 L = n × 0.0821 L.atm/K.mol × 298.15 K
⇒n = 2.06 moles
Answer:
Kinetic energy, E = 133.38 Joules
Explanation:
It is given that,
Mass of the model airplane, m = 3 kg
Velocity component, v₁ = 5 m/s (due east)
Velocity component, v₂ = 8 m/s (due north)
Let v is the resultant of velocity. It is given by :


Let E is the kinetic energy of the plane. It is given by :


E = 133.38 Joules
So, the kinetic energy of the plane is 133.38 Joules. Hence, this is the required solution.