Answer:
month = input("Input the month (e.g. January, February etc.): ")
day = int(input("Input the day: "))
if month in ('January', 'February', 'March'):
season = 'winter'
elif month in ('April', 'May', 'June'):
season = 'spring'
elif month in ('July', 'August', 'September'):
season = 'summer'
else:
season = 'autumn'
if (month == 'March') and (day > 19):
season = 'spring'
elif (month == 'June') and (day > 20):
season = 'summer'
elif (month == 'September') and (day > 21):
season = 'autumn'
elif (month == 'December') and (day > 20):
season = 'winter'
print("Season is",season)
Explanation:
Answer:

Explanation:
given data:
height of tank = 60cm
diameter of tank =40cm
accelration = 4 m/s2
suppose x- axis - direction of motion
z -axis - vertical direction
= water surface angle with horizontal surface
accelration in x direction
accelration in z direction
slope in xz plane is



the maximum height of water surface at mid of inclination is



the maximu height of wwater to avoid spilling is

= 60 - 8.2

the height requird if no spill water is 
Answer:
T= 394.38 K
Explanation:
The solution and complete explanation for the above question and mentioned conditions is given below in the attached document.i hope my explanation will help you in understanding this particular question.
Explanation:
(a) Aluminum alloys are generally not viable as lightweight structural materials in humid environments because they are highly susceptible to corrosion by water vapor.
False, aluminium is not susceptible to any corrosion by the presence of water vapor.
(b) Aluminum alloys are generally superior to pure aluminum, in terms of yield strength, because their micro structures often contain precipitate phases that strain the lattice, thereby hardening the alloy relative to pure aluminum.
True.
(c) Aluminum is not very workable at high temperatures in air, in terms of extrusion and rolling, because a non-protective oxide grows and consumes the metal, converting it to a hard and brittle ceramic.
False, aluminium is stable at high temperatures and does not oxidizes.
(d) Compared to most other metals, like steel, pure aluminum is very resistant to creep deformation.
False,pure aluminium is not resistant to the creep deformation.
(e) The relatively low melting point of aluminum is often considered a significant limitation for high-temperature structural applications.
False.
Answer:
<h2> The overall reliability of the system is 88%</h2>
Explanation:
When solving for the reliability of a complex machine, that is a machine that has more than one component, the reliability of the machine is the products of all individual components.
Given the
reliabilities of 98%,
96%, and
94%
Converting to decimals we have
98/100= 0.98
96/100= 0.96
94/100= 0.94
The product of all reliability is
0.98* 0.96 0.94= 0.88
now converting back to percent we have
0.88*100= 88%