answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Igoryamba
2 years ago
9

Near San Francisco, where the vertically downward component of the earth's magnetic field is 4.5 x 10-5 T, a car is traveling fo

rward at 19 m/s. The width of the car is 1.9 m. Find the emf induced between the two sides of the car. If positive charge accumulates on the driver's side, the enter the emf as a positive number. If negative charge accumulates on the driver's side, the enter the emf as a negative number.
Physics
1 answer:
gtnhenbr [62]2 years ago
5 0

Answer: E = 1.62*10^-3 v

Explanation:

Given

L = 1.9 m

V = 19 m/s

B = 4.5*10^-5 T

Induced emf can be found by using the formula for induced emf in a moving conductor.

e = blv, where

B is the component of the earth's magnetic field.

L is the width of the car in m

V is the velocity of the car in m/s

E is the induced emf in volts.

E = 4.5*10^-5 * 1.9 * 19

E = 1.62*10^-3 v

The drivers side is more positive, so the charge would remain positive

You might be interested in
A flute player hears four beats per second when she compares her note to an 880 Hz tuning fork (note A). She can match the frequ
ludmilkaskok [199]

Answer:

884Hz

Explanation:

Beats is the absolute difference between two frequencies therefore

Beats = f1-f2

4=f1-880

F1=880+4

F1=884Hz

7 0
2 years ago
If the rocket has an initial mass of 6300 kg and ejects gas at a relative velocity of magnitude 2000 m/s , how much gas must it
Rzqust [24]

Answer:

The amount of gas that is to be released in the first second in other to attain an acceleration of  27.0 m/s2  is

      \frac{\Delta m}{\Delta t}   = 83.92 \ Kg/s

Explanation:

From the question we are told that

   The mass of the rocket is m = 6300 kg

   The velocity at gas is being ejected is  u =  2000 m/s

    The initial acceleration desired is a =  27.0 \  m/s

   The time taken for  the gas to be ejected is  t = 1 s

Generally this desired acceleration is mathematically represented as

        a = \frac{u *  \frac{\Delta m}{\Delta t} }{M -\frac{\Delta m}{\Delta t}* t}

Here \frac{\Delta m}{\Delta  t }  is the rate at which gas is being ejected with respect to time

Substituting values

      27 = \frac{2000 *  \frac{\Delta m}{\Delta t} }{6300 -\frac{\Delta m}{\Delta t}* 1}

=>   170100 -27* \frac{\Delta m}{\Delta t} = 2000 *  \frac{\Delta m}{\Delta t}

=>   170100  = 2027 *  \frac{\Delta m}{\Delta t}

=>   \frac{\Delta m}{\Delta t}   = \frac{170100}{2027}

=>   \frac{\Delta m}{\Delta t}   = 83.92 \ Kg/s

     

3 0
2 years ago
Un cable está tendido sobre dos postes colocados con una separación de 10 m. A la mitad del cable se cuelga un letrero que provo
lisabon 2012 [21]

Answer:

El peso del cartel es 397,97 N

Explanation:

La tensión dada en cada segmento del cable = 2000 N

El desplazamiento vertical del cable = 50 cm = 0,5 m

La distancia entre los polos = 10 m

La posición del letrero en el cable = En el medio = 5

El ángulo de inclinación del cable a la vertical = tan⁻¹ (0.5 / 5) = 5.71 °

El peso del letrero = La suma del componente vertical de la tensión en cada lado del letrero

El peso del signo = 2000 × sin (5.71 grados) + 2000 × sin (5.71 grados) = 397.97 N

El peso del signo = 397,97 N.

8 0
2 years ago
A circular loop of wire with a radius of 12.0 cm and oriented in the horizontal xy-plane is located in a region of uniform magne
Ulleksa [173]

(a) 34 V

The average emf induced in the loop is given by Faraday-Newmann-Lenz law:

\epsilon = -\frac{\Delta \Phi_B}{\Delta t} (1)

where

\Delta \Phi_B is the variation of magnetic flux through the coil

\Delta t = 2.0 ms = 0.002 s is the time interval

We need to find the magnetic flux before and after. The magnetic flux is given by:

\Phi_B = BA

where

B is the magnetic field intensity

A is the area of the coil

The radius of the coil is r = 12.0 cm = 0.12 m, so its area is

A=\pi r^2 = \pi (0.12 m)^2 = 0.045 m^2

At the beginning, the magnetic field is

B_i = 1.5 T

so the flux is

\Phi_i = B_i A = (1.5 T)(0.045 m^2)=0.068 Wb

while after the removal of the coil, the magnetic field is zero, so the flux is also zero:

\Phi_f = 0

so the variation of magnetic flux is

\Delta \Phi = 0-0.068 Wb=-0.068 Wb

And substituting into (1) we find the average emf in the coil

\epsilon=-\frac{-0.068 Wb}{0.002 s}=34 V

(b) Counterclockwise

In order to understand the direction of the induced current, we have to keep in mind the negative sign in Lenz's law (1), which tells that the direction of the induced current must be such that the magnetic field produced by this current opposes the variation of magnetic flux in the coil.

In this situation, the magnetic flux through the coil is decreasing, since the coil is removed from the field. So, the induced current must be such that it produces a magnetic field whose direction is the same as the direction of the external magnetic field, which is upward along the positive z-direction.

Looking down from above and using the right-hand rule on the loop (thumb: direction of the current, other fingers wrapped: direction of magnetic field), we see that in order to produce at the center of the coil a magnetic field which is along positive z-direction, the induced current must be counterclockwise.

4 0
2 years ago
Under the Big Top elephant, Ella (2500 kg), is attracted to Phant, the 3,000 kg
Vladimir [108]

Under the Big Top elephant, Ella (2500 kg), is attracted to Phant, the 3,000 kg elephant. They are separated by 8

4 0
2 years ago
Other questions:
  • Name three different avenues by which Thomas Edison received an education
    10·1 answer
  • Which statement best describes what energy transfer diagrams show? Energy can change form, but the total amount of energy stays
    12·2 answers
  • An object is placed 18 cm in front of spherical mirror.if the image is formed at 4cm to the right of the mirror, calculate it's
    9·1 answer
  • Match each label to the boundary it describes. convergent boundary new crust forms transform boundary crust submerges into the m
    5·2 answers
  • A baseball is moving at a speed of 2.2\,\dfrac{\text{m}}{\text{s}}2.2 s m ​ 2, point, 2, space, start fraction, m, divided by, s
    9·1 answer
  • A black, totally absorbing piece of cardboard of area A = 1.7 cm2 intercepts light with an intensity of 8.1 W/m2 from a camera s
    11·2 answers
  • A charge Q is uniformly spread over one surface of a very large nonconducting square elastic sheet having sides of length d. At
    13·1 answer
  • In a shot-put competition, a shot moving at 15m/s has 450J of mechanical kinetic energy. What is the mass of the shot? Please he
    7·1 answer
  • A fish is swimming around the 720-meter perimeter of her pond. If she swims 10 laps in 120 minutes, what is her average speed in
    5·2 answers
  • 4. Dr. Copus is in charge of the cognition department at the University of Wisconsin-Madison. A new drug named Mem-Reen has beco
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!