Newton's second law ...Force = momentum change/time.momentum change = Forcextme.also, F=ma -> a=F/m - the more familiar form of Newton's second law
using one of the kinematic equations for m ... V=u+at; u=0; a=F/m -> V=(F/m)xt.-> t=mV/F using one of the kinematic equations for 2m ... V=u+at; u=0; a=F/2m -> V=(F/2m)xt. -> t=2mV/F (twice as long, maybe ?)
I think I've made a mistake somewhere below, but I think that the principle is right ...using one of the kinematic equations for m ... s=ut + (1/2)at^2); s=d;u=0;a=F/m; t=1; -> d=(1/2)(F/m)=F/2musing one of the kinematic equations for 2m ... s=ut + (1/2)at^2); s=d;u=0;a=F/2m; t=1; -> d=(1/2)(F/2m)=F/4m (half as far ????? WHAT ???)
Answer: It would increase.
Explanation:
The equation for determining the force of the gravitational pull between any two objects is:

Where G is the universal gravitational constant, m1 is the mass of one body, m2 is the mass of the other body, and r^2 is the distance between the two objects' centers squared.
Assuming the Earth's mass but not its diameter increased, in the equation above m1 (the term usually indicative of the object of larger mass) would increase, while the r^2 would not.
Thus, it goes without saying that, with some simple reasoning about fractions, an increasing numerator over a constant denominator would result in a larger number to multiply by G, thus also meaning a larger gravitational strength between Earth and whatever other object is of interest.
Answer:
Emitted power will be equal to 
Explanation:
It is given factory whistle can be heard up to a distance of R=2.5 km = 2500 m
Threshold of human hearing 
We have to find the emitted power
Emitted power is equal to 


So emitted power will be equal to 
2 because when you are doing this it causes friction Which then cause the balloon to stick
~dany-ley
Answer:
Final temperature will be 438.076 K
Explanation:
We have given temperature
Volume 
As there is no heat transfer so this is an adiabatic process
For and adiabatic process 
Here 
So 
