The resultant motion is given by pithagoras, since the two components (north and east) are perpendicular to each other.
They are asking you about the direction so you have to use trigonometry, finding that the direction is Ф=arctan(3.8/12)=17.57° north of east.
Answer:

Explanation:
The attached image shows the system expressed in the question.
We can define an expression for the system.
The equivalent equation for the system would be

so, the input signal could be expressed in dB terms
(1)
so the output signal could be expressed as.

The gain should be expressed in dB terms and power in dBm terms so

using the (1) equation to find it in terms of Watts

Answer:
.c. −160°C
Explanation:
In the whole process one kg of water at 0°C loses heat to form one kg of ice and heat lost by them is taken up by ice at −160°C . Now see whether heat lost is equal to heat gained or not.
heat lost by 1 kg of water at 0°C
= mass x latent heat
= 1 x 80000 cals
= 80000 cals
heat gained by ice at −160°C to form ice at 0°C
= mass x specific heat of ice x rise in temperature
= 1 x .5 x 1000 x 160
= 80000 cals
so , heat lost = heat gained.
Rw^2 = GmM/r^2
<span> Leads to
</span><span> w^2 r^3 = GM
</span><span> (2pi /T) ^2 r^3 = GM
</span><span> 4pi^2 r^3 = GM T^2
</span><span> r^3 = GM T^2 / 4pi^2
</span><span> Work out r^3 then r.
</span> T = 125 min = 125(60) = 7500 s
<span> R = 6.38E6 m
</span><span> m = 5.97E24 kg
</span><span> G = 6.673E-11
</span> r=<span>
8279791.78</span><span> m
Since r = radius R of Earth + height above urface,h
</span><span> h = r - R = </span><span>
8279791.78 - </span>6.38E6 = <span>
<span>1899791.78 m
h=</span></span><span>
<span>1899.79178 Km</span></span>
The velocity of the aircraft relative to the ground is 240 km/h North
Explanation:
We can solve this problem by using vector addition. In fact, the velocity of the aircraft relative to the ground is the (vector) sum between the velocity of the aircraft relative to the air and the velocity of the air relative to the ground.
Mathematically:

where
v' is the velocity of the aircraft relative to the ground
v is the velocity of the aircraft relative to the air
is the velocity of the air relative to the ground.
Taking north as positive direction, we have:
v = +320 km/h
(since the air is moving from North)
Therefore, we find
(north)
Learn more about vector addition:
brainly.com/question/4945130
brainly.com/question/5892298
#LearnwithBrainly