answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oxana [17]
2 years ago
11

The International Space Station has a mass of 1.8 × 105 kg. A 70.0-kg astronaut inside the station pushes off one wall of the st

ation so she accelerates at 1.50 m/s2. What is the magnitude of the acceleration of the space station as the astronaut is pushing off the wall? Give your answer relative to an observer who is space walking and therefore does not accelerate with the space station due to the push.
Physics
1 answer:
Aleonysh [2.5K]2 years ago
3 0

Answer:

a = 5.83 \times 10^{-4} m/s^2

Explanation:

Since the system is in international space station

so here we can say that net force on the system is zero here

so Force by the astronaut on the space station = Force due to space station on boy

so here we know that

mass of boy = 70 kg

acceleration of boy = 1.50 m/s^2

now we know that

F = ma

F = 70(1.50) = 105 N

now for the space station will be same as above force

F = ma

105 = 1.8 \times 10^5 (a)

a = \frac{105}{1.8 \times 10^5}

a = 5.83 \times 10^{-4} m/s^2

You might be interested in
The expressions for e/m and the relative error of e/m due to all of the parameters measured:
bija089 [108]

Answer:

Term 1 = (0.616 × 10⁻⁵)

Term 2 = (7.24 × 10⁻⁵)

Term 3 = (174 × 10⁻⁵)

Term 4 = (317 × 10⁻⁵)

(σ ₑ/ₘ) / (e/m) = (499 × 10⁻⁵) to the appropriate significant figures.

Explanation:

(σ ₑ/ₘ) / (e/m) = (σᵥ /V)² + (2 σᵢ/ɪ)² + (2 σʀ /R)² + (2 σᵣ /r)²

mean measurements

Voltage, V = (403 ± 1) V,

σᵥ = 1 V, V = 403 V

Current, I = (2.35 ± 0.01) A

σᵢ = 0.01 A, I = 2.35 A

Coils radius, R = (14.4 ± 0.3) cm

σʀ = 0.3 cm, R = 14.4 cm

Curvature of the electron trajectory, r = (7.1 ± 0.2) cm.

σᵣ = 0.2 cm, r = 7.1 cm

Term 1 = (σᵥ /V)² = (1/403)² = 0.0000061573 = (0.616 × 10⁻⁵)

Term 2 = (2 σᵢ/ɪ)² = (2×0.01/2.35)² = 0.000072431 = (7.24 × 10⁻⁵)

Term 3 = (2 σʀ /R)² = (2×0.3/14.4)² = 0.0017361111 = (174 × 10⁻⁵)

Term 4 = (2 σᵣ /r)² = (2×0.2/7.1)² = 0.0031739734 = (317 × 10⁻⁵)

The relative value of the e/m ratio is a sum of all the calculated terms.

(σ ₑ/ₘ) / (e/m)

= (0.616 + 7.24 + 174 + 317) × 10⁻⁵

= (498.856 × 10⁻⁵)

= (499 × 10⁻⁵) to the appropriate significant figures.

Hope this Helps!!!

6 0
2 years ago
An airplane is delivering food to a small island. It flies 100 m above the ground at a speed of 150 m/s .
miss Akunina [59]

Answer:

The airplane should release the parcel 6.7*10^2 m before reaching the island

Explanation:

The height of the plane is y_0=100m, and its speed is v=150 m/s

When an object moves horizontally in free air (no friction), the equation for the y measured with respect to ground is

y=y_0 - \frac{gt^2}{2}    [1]

And the distance X is

x = V.t     [2]

Being t the time elapsed since the release of the parcel

If we isolate t from the equation [1] and replace it in equation [2] we get

X = V . \sqrt{\frac{2y_0}{g}}

Using the given values:

x = 150 m/s  \sqrt{\frac{2\times 100m}{9.8 m/sec^2}}

x = 6.7*10^2 m

4 0
2 years ago
How much heat is released when 432 g of water cools down from 71'c to 18'c?
maria [59]
The heat released by the water when it cools down by a temperature difference \Delta T is
Q=mC_s \Delta T
where
m=432 g is the mass of the water
C_s = 4.18 J/g^{\circ}C is the specific heat capacity of water
\Delta T =71^{\circ}C-18^{\circ}C=53^{\circ} is the decrease of temperature of the water

Plugging the numbers into the equation, we find
Q=(432 g)(4.18 J/g^{\circ}C)(53^{\circ}C)=9.57 \cdot 10^4 J
and this is the amount of heat released by the water.
7 0
2 years ago
A storage tank holds methane at 120 K, with a quality of 25 %, and it warms up by 5°C per hour due to a failure in the refrigera
lord [1]

One of the fundamental pillars to solve this problem is the use of thermodynamic tables to be able to find the values of the specific volume of saturated liquid and evaporation. We will be guided by the table B.7.1 'Saturated Methane' from which we will obtain the properties of this gas at the given temperature. Later considering the isobaric process we will calculate with that volume the properties in state two. Finally we will calculate the times through the differences of the temperatures and reasons of change of heat.

Table B.7.1: Saturated Methane

T_1 = 120K

p_1 = 191.6kPa

v_f = 0.002439m^3/kg

v_{fg} = 0.30367 m^3/kg

Calculate the specific volume of the methane at state 1

v_1 = v_f+x_1v_{fg}

v_1 = 0.002439+ (0.25)(0.30367)

v_1 = 0.0783m^3/kg

Assume the tank is rigid, specific volume remains constant

v_2 = v_1

v_2 = 0.0783m^3/kg

Now from the same table we can obtain the properties,

At v_g = 0.0783m^3/kg

T_2 = 145K

p_2 = 823.7kPa

We can calculate the time taken for the methane to become a single phase

t = \frac{T_2-T_1}{\dot{T}}

Here

T_1 = Initial temperature of Methane

\dot{T} = Warming rate

Replacing

t = \frac{(145-273)-(120-273)}{5}

t = \frac{25}{5}

t = 5hr

Therefore the time taken for the methane to become a single phase is 5hr

5 0
2 years ago
A man takes 20 seconds to climb 5m up a ladder. He weighs 720N. Calculate the power he must deliver to do this.
muminat

Answer:

Power = 180 Watt.

Explanation:

W = Work done = m x g x H.

m = mass of the body.

g = acceleration due to gravity = 9.8 m/s^2.

W = weight of the body = m x g = 720 N.

H = height of the body = 5 m.

t = Time = 20 s.

Plugging the above values in the formula we get:

W = 720 x 5 = 3600 J.

Power = \frac{W}{t}

           = \frac{3600}{20} = 180 Watt.

Therefore the required value of power = 180 Watt.

5 0
2 years ago
Other questions:
  • What is the magnitude of the external force f necessary to hold the cart motionless at point c?
    14·1 answer
  • The wavelength of red light is 650 nanometers. how much bigger is the wavelength of a water wave that measures 2 meters?
    7·2 answers
  • Astronomers have discovered several volcanoes on io, a moon of jupiter. one of them, named loki, ejects lava to a maximum height
    13·1 answer
  • You are driving due north on i-81 to come to jmu with a speed of 10 m/s, suddenly you realize you forgot your book. You make a u
    12·1 answer
  • Starting with only the Balmer series light (visible light), how could we ensure that the solar panels generate a current that Ma
    14·2 answers
  • An object having a mass of 2.0 kilograms falls from a height of 15 meters. What is its kinetic energy when it hits the ground?
    13·1 answer
  • Wire A has the same length and twice the radius of wire B. Both wires are made of the same material and carry the same current.
    8·1 answer
  • Ocean waves are observed to travel to the right along the water surface during a developing storm. A Coast Guard weather station
    15·1 answer
  • Nerve impulses are carried along axons, the elongated fibers that transmit neural signals. We can model an axon as a tube with a
    5·1 answer
  • A 0.20 kg mass on a horizontal spring is pulled back 2.0 cm and released. If, instead, a 0.40 kg mass were used in this same exp
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!