Answer:
Term 1 = (0.616 × 10⁻⁵)
Term 2 = (7.24 × 10⁻⁵)
Term 3 = (174 × 10⁻⁵)
Term 4 = (317 × 10⁻⁵)
(σ ₑ/ₘ) / (e/m) = (499 × 10⁻⁵) to the appropriate significant figures.
Explanation:
(σ ₑ/ₘ) / (e/m) = (σᵥ /V)² + (2 σᵢ/ɪ)² + (2 σʀ /R)² + (2 σᵣ /r)²
mean measurements
Voltage, V = (403 ± 1) V,
σᵥ = 1 V, V = 403 V
Current, I = (2.35 ± 0.01) A
σᵢ = 0.01 A, I = 2.35 A
Coils radius, R = (14.4 ± 0.3) cm
σʀ = 0.3 cm, R = 14.4 cm
Curvature of the electron trajectory, r = (7.1 ± 0.2) cm.
σᵣ = 0.2 cm, r = 7.1 cm
Term 1 = (σᵥ /V)² = (1/403)² = 0.0000061573 = (0.616 × 10⁻⁵)
Term 2 = (2 σᵢ/ɪ)² = (2×0.01/2.35)² = 0.000072431 = (7.24 × 10⁻⁵)
Term 3 = (2 σʀ /R)² = (2×0.3/14.4)² = 0.0017361111 = (174 × 10⁻⁵)
Term 4 = (2 σᵣ /r)² = (2×0.2/7.1)² = 0.0031739734 = (317 × 10⁻⁵)
The relative value of the e/m ratio is a sum of all the calculated terms.
(σ ₑ/ₘ) / (e/m)
= (0.616 + 7.24 + 174 + 317) × 10⁻⁵
= (498.856 × 10⁻⁵)
= (499 × 10⁻⁵) to the appropriate significant figures.
Hope this Helps!!!
Answer:
The airplane should release the parcel
m before reaching the island
Explanation:
The height of the plane is
, and its speed is v=150 m/s
When an object moves horizontally in free air (no friction), the equation for the y measured with respect to ground is
[1]
And the distance X is
x = V.t [2]
Being t the time elapsed since the release of the parcel
If we isolate t from the equation [1] and replace it in equation [2] we get

Using the given values:

x =
m
The heat released by the water when it cools down by a temperature difference

is

where
m=432 g is the mass of the water

is the specific heat capacity of water

is the decrease of temperature of the water
Plugging the numbers into the equation, we find

and this is the amount of heat released by the water.
One of the fundamental pillars to solve this problem is the use of thermodynamic tables to be able to find the values of the specific volume of saturated liquid and evaporation. We will be guided by the table B.7.1 'Saturated Methane' from which we will obtain the properties of this gas at the given temperature. Later considering the isobaric process we will calculate with that volume the properties in state two. Finally we will calculate the times through the differences of the temperatures and reasons of change of heat.
Table B.7.1: Saturated Methane




Calculate the specific volume of the methane at state 1



Assume the tank is rigid, specific volume remains constant


Now from the same table we can obtain the properties,
At 


We can calculate the time taken for the methane to become a single phase

Here
Initial temperature of Methane
Warming rate
Replacing



Therefore the time taken for the methane to become a single phase is 5hr
Answer:
Power = 180 Watt.
Explanation:
W = Work done = m x g x H.
m = mass of the body.
g = acceleration due to gravity = 9.8 m/s^2.
W = weight of the body = m x g = 720 N.
H = height of the body = 5 m.
t = Time = 20 s.
Plugging the above values in the formula we get:
W = 720 x 5 = 3600 J.
Power = 
=
= 180 Watt.
Therefore the required value of power = 180 Watt.