answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
worty [1.4K]
2 years ago
12

An 800-kHz radio signal is detected at a point 2.7 km distant from a transmitter tower. The electric field amplitude of the sign

al at that point is 0.36 V/m. Assume that the signal power is radiated uniformly in all directions and that radio waves incident upon the ground are completely absorbed. What is the intensity of the radio signal at that point?
a. 240 µW/m^2
b. 340 µW/m^2
c. 86 µW/m^2
d. 170 µW/m^2
e. 120 µW/m^2
Physics
1 answer:
dimaraw [331]2 years ago
7 0

Answer:

Option D is correct: 170 µW/m²

Explanation:

Given that,

Frequency f = 800kHz

Distance d = 2.7km = 2700m

Electric field Eo = 0.36V/m

Intensity of radio signal

The intensity of radial signal is given as

I = c•εo•Eo²/2

Where c is speed of light

c = 3×10^8m/s

εo = 8.85 × 10^-12 C²/Nm²

I = 3×10^8 × 8.85×10^-12 × 0.36²/2

I = 1.72 × 10^-4W/m²

I = 172 × 10^-6 W/m²

I = 172 µW/m²

Then, the intensity of the radio wave at that point is approximately 170 µW/m²

You might be interested in
A tank contains 100 gal of water and 50 oz of salt.water containing a salt concentration of 1 4 (1 1 2 sin t) oz/gal flows into
Alchen [17]

Answer:

Explanation:

Heres the possible full question and solution:

A tank contains 100 gal of water and 50 oz of salt. Water containing a salt concentration of ¼ (1 + ½ sin t) oz/gal flows ito the tank at a rate of 2 gal/min, and the mixture in the tank flows out at the same rate.

a. Find the amount of salt in the tank at any time.

b. Plot the solution for a time period long enough so that you see the ultimate behavior of the graph.

c. The long-time behavior of the solution is an oscillation about a certain constant level. What is this level? What is the amplitude of the oscillation?

solution

a)

Consider the tank contains 100gal of water and 50 oz of salt

Assume that the amount of salt in the tank at time t is Q(t).

Then, the rate of change of salt in the tank is given by \frac{dQ}{dt}.

Here, \frac{dQ}{dt}=rate of liquid flowing in the tank - rate of liquid flowing out.

Therefore,

Rate_{in} =2gal/min \times \frac{1}{4} (1+ \frac{1}{2}sin t)oz/gal\\\\\\ \frac{1}{2} (1+ \frac{1}{2}sin t)oz/min\\\\\\Rate_{out}=2gal/min \times\frac{Q}{100}oz/gal\\\\\frac{Q}{50}oz/min

Therefore,

\frac{dQ}{dt} can be evaluated as shown below:

\frac{dQ}{dt}=\frac{1}{2}(1+\frac{1}{2}\sin t)-\frac{Q}{50}\\\\\\\frac{dQ}{dt}+\frac{1}{50}Q=\frac{1}{2}+\frac{1}{4}\sin t

The above differential equation is in standard form:

\frac{dy}{dt}+Py=G

Here, P=\frac{1}{50},G=\frac{1}{2}+\frac{1}{4}\sin t

The integrating factor is as follows:

\mu(t)=e^{\int {P}dt}\\\mu(t)=e^{\int {\frac{1}{50}}dt}\\\mu(t)=e^{\frac{t}{50}}

Thus, the integrating factor is  \mu(t)=e^{\frac{t}{50}}

Therefore, the general solution is as follows:

y\mu(t)=\int {\mu (t)G}dt\\\\Qe^{\frac{t}{50}}=\int {e^{\frac{t}{50}}(\frac{1}{2}+\frac{1}{4}\sin t) dt}\\\\Qe^{\frac{t}{50}}=\frac{1}{2}\int {e^{\frac{t}{50}}dt + \frac{1}{4}\int {\sin t {e^{\frac{t}{50}}} dt}\\\\\Qe^{\frac{t}{50}}=25 {e^{\frac{t}{50}} + \frac{1}{4}\int {\sin t {e^{\frac{t}{50}}} dt}+C...(1)

Here, C is arbitrary constant of integration.

Solve \int {\sin te^{\frac{t}{50}}} dt}

Here u = e^{\frac{t}{50}} and v =\sin t.

Substitute u , v in the below formula:

\int{u,v}dt=u\int{v}dt-\int\frac{du}{dt}\int{v}dt\dot dt\\\\\int {e^{\frac{t}{50}}\sin t}dt=-e^{\frac{t}{50}}\cos t + \frac{1}{50}\int{e^{\frac{t}{50}}\cos t}dt...(2)

Now, take u = e^{\frac{t}{50}}, v =\sin t

Therefore, \int{e^{\frac{t}{50}}\cos t} dt=\int {e^{\frac{t}{50}}\sin t}dt - \frac{1}{50}\int{e^{\frac{t}{50}}\sin t}dt...(3)

Use (3) in equation(2)

\int {e^{\frac{t}{50}}\sin t}dt=-e^{\frac{t}{50}}\cos t + \frac{e^{\frac{t}{50}}}{50}\sin t - \frac{1}{2500}\int{e^{\frac{t}{50}}\sin t}dt\\\\\frac{2501}{2500}\int{e^{\frac{t}{50}}\sin t}dt={e^{\frac{t}{50}}\cos t}+\frac{e^{\frac{t}{50}}}{50}\sin t\\\\\int{e^{\frac{t}{50}}\sin t}dt=\frac{2500}{2501}{e^{\frac{t}{50}}\cos t}+\frac{50}{2501}e^{\frac{t}{50}}\sin t...(4)

Use (4) in equation(l) .

Qe^{\frac{t}{50}}=25 e^{\frac{t}{50}} - \frac{625}{2501}e^{\frac{t}{50}}\cos t +\frac{25}{5002}e^{\frac{t}{50}}\sin t+C

Apply the initial conditions t =0, Q = 50.

50=25-\frac{625}{2501}+c\\\\c=\frac{63150}{2501}

So, Qe^{\frac{t}{50}}=25 e^{\frac{t}{50}} - \frac{625}{2501}e^{\frac{t}{50}}\cos t +\frac{25}{5002}e^{\frac{t}{50}}\sin t+\frac{63150}{2501}

Therefore, the amount of salt in the tank at any time is as follows:

Qe^{\frac{t}{50}}=25 e^{\frac{t}{50}} - \frac{625}{2501}e^{\frac{t}{50}}\cos t +\frac{25}{5002}e^{\frac{t}{50}}\sin t+\frac{63150}{2501}e^{\frac{-t}{50}}

b)

sketch the solution curve as shown in attachment as graph 1:

CHECK COMMENT FOR C

3 0
2 years ago
Odległość między kolejnymi grzbietami fal na morzu wynosi 20 m. Łódź opada z grzbietu fali, unosi się i osiąga ponownie najwyższ
Veronika [31]

Answer:

Explanation:

The distance between successive wave crests at sea is 20 m. The boat descends from the crest of the wave, rises and reaches the highest position again within 5 s. Calculate the wave propagation speed.

Given that,

The distance between two successive crest is 20m

Wavelength is the distance between two successive crest or trough

Then, it's wavelength is λ = 20m

The time to reached the maximum height is 5seconds, then it will take (5×4) to complete one period

Then,

Period T = 20seconds

From wave equation

v = fλ

Where

v is speed

f is frequency and

λ is wavelength

The frequency is related to the period

f =  1 / T

Then,

v = λ / T

So, v = 20 / 20

v = 1 m/s

The speed of propagation of the wave is 1m/s

To Polish

Jeśli się uwzględni,

Odległość między dwoma kolejnymi grzebieniami wynosi 20 m

Długość fali to odległość między dwoma kolejnymi grzebieniami lub dolinami

Zatem jego długość fali wynosi λ = 20 m

Czas do osiągnięcia maksymalnej wysokości wynosi 5 sekund, a następnie ukończenie jednego okresu zajmie (5 × 4)

Następnie,

Okres T = 20 sekund

Z równania falowego

v = fλ

Gdzie

v to prędkość

f oznacza częstotliwość, a

λ jest długością fali

Częstotliwość jest związana z okresem

f = 1 / T

Następnie,

v = λ / T

Zatem v = 20/20

v = 1 m / s

Prędkość propagacji fali wynosi 1m/s

6 0
2 years ago
A square loop of wire with initial side length 10 cm is placed in a magnetic field of strength 1 T. The field is parallel to the
Fofino [41]

Answer:

2 x 10⁻³ volts

Explanation:

B = magnetic of magnetic field parallel to the axis of loop = 1 T

\frac{dA}{dt} = rate of change of area of the loop = 20 cm²/s = 20 x 10⁻⁴ m²

θ = Angle of the magnetic field with the area vector = 0

E = emf induced in the loop

Induced emf is given as

E = B \frac{dA}{dt}

E = (1) (20 x 10⁻⁴ )

E = 2 x 10⁻³ volts

E = 2 mV

7 0
2 years ago
Jaiden is writing a report about the structure of the atom. In her report, she says that the atom has three main parts and two s
USPshnik [31]
No because an atom consists of <u>two</u> main parts <em>and</em> <u>three</u> subatomic particles - protons, neutrons, electrons. Each one is smaller than an atom, therefore they are subatomic particles. An atom only requires protons and electrons to be an atom - e.g. Hydrogen has 1 proton and 1 electron. Neutrons do not affect the overall charge of the atom, and only increase the atomic mass.
7 0
2 years ago
Read 2 more answers
Plants use sunlight as energy to convert carbon dioxide and water into glucose and oxygen. Which best describes the reaction? Th
Alina [70]

Answer:

the correct statement is the first

The law of conservation of mass indicates the same amount of carbon will be found in the reactants as in the products.

Explanation:

The law of conservation of energy establishes that the masses are not destroyed, they can only be transformed.

Therefore the mass of carbon in the reactants (CO2 and H2O) must be in the products (glucose and oxygen)

so the correct statement is the first

The law of conservation of mass indicates the same amount of carbon will be found in the reactants as in the products.

6 0
2 years ago
Read 2 more answers
Other questions:
  • The gravitational force between two asteroids is 6.2 × 108 n. asteroid y has three times the mass of asteroid z. if the distance
    6·2 answers
  • A bird flies at an average velocity of 3.60 m/s for 18.4 s. How far does it travel? (unit=m)
    10·1 answer
  • Suppose that a barometer was made using oil with rho=900 kg/m3. What is the height of the barometer at atmospheric pressure?
    10·1 answer
  • A football player kicks a football downfield. The height of the football increases until it reaches a maximum height of 15 yards
    12·2 answers
  • A soccer player kicks a ball down the field. It rolls to a stop just before the goal. Which statement accurately describes the m
    15·1 answer
  • A proposed space elevator would consist of a cable stretching from the earth's surface to a satellite, orbiting far in space, th
    6·1 answer
  • a)A concentration C(mol/L) varies with time (min) according to the equation C=3.00exp(−2.00t) a) What are the implicit units of
    7·1 answer
  • A starship passes Earth at 80% of the speed of light and sends a drone ship forward at half the speed of light rela- tive to its
    10·1 answer
  • A computer is connected across a 110 V power supply. The computer dissipates 123 W of power in the form of electromagnetic radia
    12·2 answers
  • A team of engineering students is testing their newly designed 200 kg raft in the pool where the diving team practices. The raft
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!