answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bad White [126]
2 years ago
11

Under which one of the following circumstances will heat transfer occur via convection? Group of answer choices Convection occur

s within metal objects. Convection only occurs in non-metallic solids. Convection occurs only within a vacuum. Convection occurs in the presence of a liquid or a gas. Convection can occur whether matter is present or not.
Physics
2 answers:
BartSMP [9]2 years ago
8 0

Answer:

1) in metal object heat transfer through the conduction .In vacuum heat transfer through only radiation .

In only gaseous state or in liquid state the heat transfer through convection hence option D is correct

Sever21 [200]2 years ago
8 0

Answer:

The answer is: Convection occurs in the presence of a liquid or a gas

Explanation:

Convection is a process by which heat is transmitted, either between two liquid or gaseous substances, provided they are at different temperatures.

Heat transfer occurs when there is a temperature gradient between the two bodies that are in direct contact; then, the heat flow flows from the hottest body to the least hot body. Liquids and gases are considered fluids.

You might be interested in
A gymnast practices two dismounts from the high bar on the uneven parallel bars. during one dismount, she swings up off the bar
Fiesta28 [93]
Note:
The height of a high bar from the floor is h = 2.8 m (or 9.1 ft).
It is not provided in the question, so the standard height is assumed.

g = 9.8 m/s², acceleration due to gravity.
Note that the velocity and distance are measured as positive upward.
Therefore the floor is at a height of h = -2.8 m.

First dismount:
u = 4.0 m/s, initial upward velocity.
Let v = the velocity when the gymnast hits the floor.
Then
v² = u² - 2gh
v² = 16 - 2*9.8*(-2.8) = 70.88
v = 8.42 m/s

Second dismount:
u = -3.0 m/s
v² = (-3.0)² - 2*9.8*(-2.8) = 63.88 m/s
v = 7.99 m/s

The difference in landing velocities is 8.42 - 7.99 = 0.43 m/s.

Answer:
First dismount:
  Acceleration  = 9.8 m/s² downward
  Landing velocity = 8.42 m/s downward

Second dismount:
  Acceleration = 9.8 m/s² downward
  Landing velocity = 7.99 m/s downward

The landing velocities differ by 0.43 m/s.

8 0
2 years ago
The length of a 60 W, 240 Ω light bulb filament is 60 cm Remembering that the current in the filament is proportional to the ele
faust18 [17]

Answer:

Finally current will be

i = 0.35 A

Explanation:

As we know that power of the bulb is given by the formula

P = \frac{V^2}{R}

now we have

P = 60 W

R = 240 ohm

so we have

60 = \frac{V^2}{240}

V = 120 Volts

now the current in the bulb is given as

i = \frac{V}{R}

i = \frac{120}{240} = 0.5 A

now when length of the filament is double

so the resistance of the wire also gets double

so we have

P = \frac{V^2}{R}

60 = \frac{V^2}{480}

V = 169.7 volts

now the current in the bulb is given as

V = i R

169.7 = i(480)

i = 0.35 A

8 0
2 years ago
a. For a spring-mass oscillator, if you double the mass but keep the stiffness the same, by what numerical factor does the perio
Katena32 [7]

Answer:

a) factor b=\sqrt{2}

b) factor b=\frac{1}{2}

c) factor b=1

d) factor b=1

Explanation:

Time period of oscillating spring-mass system is given as:

T=\frac{1}{f}

T={2\pi} \sqrt{\frac{m}{k} }

where:

f= frequency of oscillation

m= mass of the object attached to the spring

k= stiffness constant of the spring

a) <u>On doubling the mass:</u>

  • New mass, m'=2m

<u>Then the new time period:</u>

T'=2\pi\sqrt{\frac{m'}{k} }

T'=2\pi\sqrt{\frac{2m}{k} }

T'=\sqrt{2}\times  2\pi\sqrt{\frac{m}{k} } }

T'=\sqrt{2} \times T

where the factor b=\sqrt{2} as asked in the question.

b) On quadrupling the stiffness constant while other factors are constant:

New stiffness constant, k'=4k

<u>Then the new time period:</u>

T'=2\pi\sqrt{\frac{m}{k'} }\\\\T'=2\pi\sqrt{\frac{m}{4k} }\\\\T'=\frac{1}{2} \times  2\pi\sqrt{\frac{m}{k} } }\\\\T'=\frac{1}{2} \times T

where the factor  b=\frac{1}{2}  as asked in the question.

c) On quadrupling the stiffness constant as well as mass:

New stiffness constant, k'=4k

New mas, m'=4m

<u>Then the new time period:</u>

T'=2\pi\sqrt{\frac{m'}{k'} }\\\\T'=2\pi\sqrt{\frac{4m}{4k} }\\\\T'=1 \times  2\pi\sqrt{\frac{m}{k} } }\\\\T'=1 \times T

where factor b=1 as asked in the question.

d) On quadrupling the amplitude there will be no effect on the time period because T is independent of amplitude as we can observe in the equation.

so, factor b=1

7 0
1 year ago
Use Newton's laws of motion to explain why it is important that baseballs and softballs each have a small acceptable range of ma
tiny-mole [99]

Explanation:

new non law neutron means neutral then it's important that baseball and softball features small respectable range of masses soft it means that when a ball hits anything hard it comes back by the Newton Law if the baseball is big and the small boy small and then if the contract with each other they ignore triple so when a ball hits the wall if the comeback because of the Mutants and when a big ball if we throw it to the wall it doesn't come that it comes back but in a very low way because it contains less neutrons in it if it is helpful please share with me

5 0
2 years ago
A 225 kg red bumper car is moving at 3.0 m/s. It hits a stationary 180 kg blue bumper car. The red and blue bumper cars combine
Alex Ar [27]

Given


m1(mass of red bumper): 225 Kg


m2 (mass of blue bumper): 180 Kg


m3(mass of green bumper):150 Kg


v1 (velocity of red bumper): 3.0 m/s


v2 (final velocity of the combined bumpers): ?




The law of conservation of momentum states that when two bodies collide with each other, the momentum of the two bodies before the collision is equal to the momentum after the collision. This can be mathemetaically represented as below:


Pa= Pb


Where Pa is the momentum before collision and Pb is the momentum after collision.


Now applying this law for the above problem we get


Momentum before collision= momentum after collision.


Momentum before collision = (m1+m2) x v1 =(225+180)x 3 = 1215 Kgm/s


Momentum after collision = (m1+m2+m3) x v2 =(225+180+150)x v2

=555v2

Now we know that Momentum before collision= momentum after collision.


Hence we get


1215 = 555 v2


v2 = 2.188 m/s


Hence the velocity of the combined bumper cars is 2.188 m/s

4 0
2 years ago
Read 2 more answers
Other questions:
  • if one sprinter runs the 400.0 m in 58 seconds and another can run the same distance in 60.0 seconds, by how much distance will
    11·2 answers
  • A small object carrying a charge of -3.00 nc is acted upon by a downward force of 30.0 nn when placed at a certain point in an e
    11·1 answer
  • A softball is thrown from the origin of an x-y coordinate system with an initial speed of 18 m/s at an angle of 35∘ above the ho
    12·1 answer
  • If the diameter of the black marble is 3.0 cm, and by using the formula for volume, what is a good approximation of its volume?
    14·2 answers
  • The temperature, T, of a gas is jointly proportional to the pressure P of the gas and the volume V occupied by the gas. Use C as
    12·1 answer
  • Ferdinand the frog is hopping from lily pad to lily pad in search of a good fly
    5·1 answer
  • Two masses hang below a massless meter stick. Mass 1 is located at the 10cm mark with a weight of 15kg, while mass 2 is located
    13·1 answer
  • Two rocks are tied to massless strings and whirled in nearly horizontal circles so that the time to travel around the circle onc
    9·1 answer
  • Technician A says that the pressure differential switch may need to be re-centered after bleeding the brakes. Technician B says
    11·1 answer
  • Three cars (car F, car G, and car H) are moving with the same velocity when the driver suddenly slams on the brakes, locking the
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!