Answer:
see explaination
Step-by-step explanation:
Here the null hypothesis is that the PCB survives against the alternate that the PCB 'does not survive'. The test says that the PCB will survice if it is classified as 'good'; or, it will not survive if it is classifies as 'bad'.
a. The Type II error is the error committed when a PCB which cannot actually survive is classified as 'good'.
b. Therefore P(Type II error) = P(The PCB is classified as 'good' | PCB does not survives) = 0.03.
<span>2/15 if drawn without replacement.
1/9 if drawn with replacement.
Assuming that the chips are drawn without replacement, there are 6 * 5 different possibilities. And that's a low enough number to exhaustively enumerate them. So they are:
1,2 : 1,3 : 1,4 : 1,5 : 1,6
2,1 : 2,3 : 2,4 : 2,5 : 2,6
3,1 : 3,2 : 3.4 : 3,5 : 3,6
4,1 : 4,2 : 4.3 : 4,5 : 4,6
5,1 : 5,2 : 5.3 : 5,4 : 5,6
6,1 : 6,2 : 6.3 : 6,4 : 6,5
Of the above 30 possible draws, there are 4 that add up to 5. So the probability is 4/30 = 2/15
If the draw is done with replacement, then there are 36 possible draws. Once again, small enough to exhaustively list, they are:
1,1 : 1,2 : 1,3 : 1,4 : 1,5 : 1,6
2,1 : 2,2 : 2,3 : 2,4 : 2,5 : 2,6
3,1 : 3,2 : 3,3 : 3.4 : 3,5 : 3,6
4,1 : 4,2 : 4.3 : 4,4 : 4,5 : 4,6
5,1 : 5,2 : 5.3 : 5,4 : 5,5 : 5,6
6,1 : 6,2 : 6.3 : 6,4 : 6,5 : 6,6
And of the above 36 possibilities, exactly 4 add up to 5. So you have 4/36 = 1/9</span>
This ratio is in a form of dogs:cats.
The ratio given means there are 3 dogs for every 2 cats.
You can rewrite it as 3 dogs:2 cats.
If there are 30 cats, you would write the ratio as x dogs:30 cats.
Since the same must be done to both sides, you must find how many times 2 was multiplied to get 30 then multiply dogs by that number.
30 / 2 = 15
3 • 15 = 45
So if a shelter has 30 cats, then it has 45 dogs.
This can be written in a ratio as 45:30, or 45 dogs:30 cats.