The fencing line x is the height of a rectangle triangle of base = y, hypothenuse of 9 m, so we use Pythagoras theorem to solve:
hyp^2 = height^2 + base^2
9^2 = x^2 + y^2
x^2 = 81 - y^2
we can see that x is also the height of another rectangle triangle of base = 15 - y, hypothenuse of 12 m, so we use Pythagoras theorem to solve:
hyp^2 = height^2 + base^2
12^2 = x^2 + (15 - y)^2
lets expand:
144 = x^2 + 225 - 30y + y^2
substitute x^2 from the first equation in the last:
144 = 81 - y^2 + 225 - 30y + y^2
144 = 81 + 225 - 30y
30y = -144 + 81 + 225
y = 5.4 m
substitute in the fence equation:
x^2 = 81 - y^2
x^2 = 81 - 5.4^2
x = 7.2 m that is the length of the fence
Answer:
=2.83 the second option
Step-by-step explanation:
Using the trigonometric ratios we can find the sides of the triangle with the acute angles.
In the triangle provided we will use COSINE
Cos ∅=adjacent/hypotenuse
Let us substitute with the values in the question into the formula.
Tan 45 =2/x
x=2/Cos 45
=2.83 units
Answer: 
Step-by-step explanation:
Given
The goat is tied by a rope to one corner of a rectangular field with length of rope 10 m.
Zoe can graze in an area equal to quadrant of circle with radius 10 m
Area of grazing is
9.9^2X1.79
9.9^2=98.01
98.01X1.79=175.4379