Answer:
80% (Eighty percent)
Explanation:
The material has a refractive index (n) of 1.25
Speed of light in a vacuum (c) is 2.99792458 x 10⁸ m/s
We can find the speed of light in the material (v) using the relationship
n = c/v, similarly
v = c/n
therefore v = 2.99792458 x 10⁸ m/s ÷ (1.25) = 239 833 966 m/s
v = 239 833 966 m/s
Therefore the percentage of the speed of light in a vacuum that is the speed of light in the material can be calculated as
(v/c) × 100 = (1/n) × 100 = (1/1.25) × 100 = 0.8 × 100 = 80%
Therefore speed of light in the material (v) is eighty percent of the speed of light in the vacuum (c)
Answer: 8.1 x 10^24
Explanation:
I(t) = (0.6 A) e^(-t/6 hr)
I'll leave out units for neatness: I(t) = 0.6e^(-t/6)
If t is in seconds then since 1hr = 3600s: I(t) = 0.6e^(-t/(6 x 3600) ).
For neatness let k = 1/(6x3600) = 4.63x10^-5, then:
I(t) = 0.6e^(-kt)
Providing t is in seconds, total charge Q in coulombs is
Q= ∫ I(t).dt evaluated from t=0 to t=∞.
Q = ∫(0.6e^(-kt)
= (0.6/-k)e^(-kt) evaluated from t=0 to t=∞.
= -(0.6/k)[e^-∞ - e^-0]
= -0.6/k[0 - 1]
= 0.6/k
= 0.6/(4.63x10^-5)
= 12958 C
Since the magnitude of the charge on an electron = 1.6x10⁻¹⁹ C, the number of electrons is 12958/(1.6x10^-19) = 8.1x10^24 to two significant figures.
The density of the substance is the ratio of its mass over the space it occupies. In mathematical equation, this can be expressed as,
ρ = m / v
where ρ is density, m is mass, and v is volume.
Substituting the known values from the given,
ρ = (45 g) / (8 cm³)
ρ = 5.625 g/cm³
<em>ANSWER: 5.625 g/cm³</em>
Answer:

Explanation:
Given the absence of non-conservative force, the motion of the coin is modelled after the Principle of Energy Conservation solely.



The moment of inertia of the coin is:

After some algebraic handling, an expression for the maximum vertical height is derived:




To solve this problem it is necessary to apply the concepts related to thermal stress. Said stress is defined as the amount of deformation caused by the change in temperature, based on the parameters of the coefficient of thermal expansion of the material, Young's module and the Area or area of the area.

Where
A = Cross-sectional Area
Y = Young's modulus
= Coefficient of linear expansion for steel
= Temperature Raise
Our values are given as,




Replacing we have,


Therefore the size of the force developing inside the steel rod when its temperature is raised by 37K is 38526.1N