Answer:
about 11.03 million
Step-by-step explanation:
Use the equation I = P(1+r/100)^n - P (I is the compound interest, P is the principle, r is the rate percent, and n is the number of years):
Substitute the values given:
I = 70,000,000(1 + 5/100)^3 - 70,000,000
Use a calculator to solve and you will get ~11.03 million.
Answer:
The height of the cylinder
Step-by-step explanation:
The perpendicular distance between two bases of a cylinder is not going to be the radius or diameter of the bases (because it is BETWEEN the bases, not ON them) and it is not the area of the bases because the area of a shape cannot be a distance.
So, the only option left is the height of the cylinder, which is the correct answer.
we have

Factor the leading coefficient

Complete the square. Remember to balance the equation by adding the same constants to each side


Divide both sides by 

Rewrite as perfect squares

Taking the square roots of both sides (square root property of equality)

Remember that





<u>the answer is</u>
The solutions are


T( 1.50+ 1.25) + 10.00 < 20.00
2.75t + 10.00 < 20.00
2.75t < 10.00
T < 3.63
Partial bulbs and puts can't be bought, so Anika cannot spent the full $20.00.
Therefore, t < 3 if t can be a whole number.
Answer:
a) <u>0.4647</u>
b) <u>24.6 secs</u>
Step-by-step explanation:
Let T be interval between two successive barges
t(t) = λe^λt where t > 0
The mean of the exponential
E(T) = 1/λ
E(T) = 8
1/λ = 8
λ = 1/8
∴ t(t) = 1/8×e^-t/8 [ t > 0]
Now the probability we need
p[T<5] = ₀∫⁵ t(t) dt
=₀∫⁵ 1/8×e^-t/8 dt
= 1/8 ₀∫⁵ e^-t/8 dt
= 1/8 [ (e^-t/8) / -1/8 ]₀⁵
= - [ e^-t/8]₀⁵
= - [ e^-5/8 - 1 ]
= 1 - e^-5/8 = <u>0.4647</u>
Therefore the probability that the time interval between two successive barges is less than 5 minutes is <u>0.4647</u>
<u></u>
b)
Now we find t such that;
p[T>t] = 0.95
so
t_∫¹⁰ t(x) dx = 0.95
t_∫¹⁰ 1/8×e^-x/8 = 0.95
1/8 t_∫¹⁰ e^-x/8 dx = 0.95
1/8 [( e^-x/8 ) / - 1/8 ]¹⁰_t = 0.95
- [ e^-x/8]¹⁰_t = 0.96
- [ 0 - e^-t/8 ] = 0.95
e^-t/8 = 0.95
take log of both sides
log (e^-t/8) = log (0.95)
-t/8 = In(0.95)
-t/8 = -0.0513
t = 8 × 0.0513
t = 0.4104 (min)
so we convert to seconds
t = 0.4104 × 60
t = <u>24.6 secs</u>
Therefore the time interval t such that we can be 95% sure that the time interval between two successive barges will be greater than t is <u>24.6 secs</u>