Answer:
Step-by-step explanation:
It is not perfectly linear because the difference between the y values is not constant. However, when you use the regression function on your calculator and enter the L1 values as your x's and the L2 values as your y's and use the LinReg equation, you get an r-squared value of .999900 and an r value of .999950. So it linear, with your answer being "linear, because the r value for the linear model is closest to 1".
Answer:
Step-by-step explanation:
Let the money earned during fundraising activities =x
Since the World Issues club has decided to donate 60% of all their fundraising activities this year to Stephen Lewis Foundation.
The amount of money the foundation will receive
=60% of x
= 0.6x
In the bake sale, the club raised $72.
Therefore, the amount the foundation will receive =0.6*72=$43.20
At the end of the year, the World Issues Club mailed a cheque to the foundation for $850.
Therefore:
0.6x=850
x=850/0.6
x=$1416.67
The total amount of money the club raised is $1416.67.
7 MPH because 2 1/3
in 20 minutes. So you multiply 20 by 3 you get 60. Then you multiply 2 by 3 you get 6. Then you multiply 1/3 x 3 and you get 1. 6=1=7 Hope This Helps
In the general case in Cartesian coordinates, you would use the definition of a parabola as the locus of points equidistant from the focus and directrix. The equation would equate the square of the distance from a general point (x, y) to the focus with the square of the distance from that point to the directrix line.
Suppose the focus is located at (h, k) and the equation of the directrix is ax+by+c=0. The expression for the square of the distance from (x, y) to the point (h, k) is ...
(d₁)² = (x-h)²+(y-k)²
The expression for the square of the distance from (x, y) to the directrix line is
(d₂)² = (ax+by+c)²/(a²+b²)
Equating these expressions gives the equation of the parabola.
(x-h)²+(y-k)² = (ax+by+c)²/(a²+b²)
When the directrix is parallel with one of the axes, one of the coefficents "a" or "b" is zero and the equation becomes much simpler. Often, it would be easier to make use of the formula (for a directrix parallel to the x-axis):
y = 1/(4p)*(x -h)² +k
where the (h, k) here is the vertex, the point halfway between the focus and directrix, and "p" is the (signed) distance from the focus to the vertex. (p is positive when the focus is above or to the right of the vertex.)