Kinetic energy is calculated through the equation,
KE = 0.5mv²
At initial conditions,
m₁: KE = 0.5(0.28 kg)(0.75 m/s)² = 0.07875 J
m₂ : KE = 0.5(0.45 kg)(0 m/s)² = 0 J
Due to the momentum balance,
m₁v₁ + m₂v₂ = (m₁ + m₂)(V)
Substituting the known values,
(0.29 kg)(0.75 m/s) + (0.43 kg)(0 m/s) = (0.28 kg + 0.43 kg)(V)
V = 0.2977 m/s
The kinetic energy is,
KE = (0.5)(0.28 kg + 0.43 kg)(0.2977 m/s)²
KE = 0.03146 J
The difference between the kinetic energies is 0.0473 J.
Answer:
temperature on left side is 1.48 times the temperature on right
Explanation:
GIVEN DATA:

T1 = 525 K
T2 = 275 K
We know that


n and v remain same at both side. so we have

..............1
let final pressure is P and temp 

..................2
similarly
.............3
divide 2 equation by 3rd equation
![\frac{21}{11}^{-2/3} \frac{21}{11}^{5/3} = [\frac{T_1 {f}}{T_2 {f}}]^{5/3}](https://tex.z-dn.net/?f=%5Cfrac%7B21%7D%7B11%7D%5E%7B-2%2F3%7D%20%5Cfrac%7B21%7D%7B11%7D%5E%7B5%2F3%7D%20%3D%20%5B%5Cfrac%7BT_1%20%7Bf%7D%7D%7BT_2%20%7Bf%7D%7D%5D%5E%7B5%2F3%7D)

thus, temperature on left side is 1.48 times the temperature on right
A falling skydiver opens his parachute. A short time later, the weight of the skydiver-parachute system and the drag force exerted on the system are equal in magnitude. The following statements predicts the motion of the skydiver at this time
<u>The skydiver is moving downward with constant speed.</u>
Explanation:
Immediately on leaving the aircraft, the skydiver accelerates downwards due to the force of gravity. There is no air resistance acting in the upwards direction, and there is a resultant force acting downwards. The skydiver accelerates towards the ground.
The forces acting on a falling leaf are : gravity and air resistance.
The net force and the acceleration on the falling skydiver is upward.
An upward net force on a downward falling object would cause that object to slow down. The skydiver thus slows down.
As the speed decreases, the amount of air resistance also decreases until once more the skydiver reaches a terminal velocity.
<u>A skydiver falling at a constant speed opens his parachute. When the skydiver is falling, the forces are unbalanced.</u>
I don’t know what the angle is in your diagram so I used the angle from the vertical.
= Heat released to cold reservoir
= Heat released to hot reservoir
= maximum amount of work
= temperature of cold reservoir
= temperature of hot reservoir
we know that

eq-1
maximum work is given as
=
- 
using eq-1
=
- 