answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paha777 [63]
2 years ago
6

A heat recovery device involves transferring energy from the hot flue gases passing through an annular region to pressurized wat

er flowing through the inner tube of the annulus. The inner tube has inner and outer diameters of 24 and 30 mm and is connected by eight struts to an insulated outer tube of 60-mm diameter. Each strut is 3 mm thick and is integrally fabricated with the inner tube from carbon steel (k 50 W/m K). Consider conditions for which water at 300 K flows through the inner tube at 0.161 kg/s while flue gases at 800 K flow through the annulus, maintaining a convection coefficient of 100 W/m2 K on both the struts and the outer surface of the inner tube. What is the rate of heat transfer per unit length of tube from gas to the water?

Engineering
1 answer:
Elina [12.6K]2 years ago
4 0

Answer:

See explaination

Explanation:

Please kindly check attachment for the step by step solution of the given problem.

You might be interested in
Oliver is designing a new children’s slide to increase the speed at which a child can descend. His first design involved steel b
AVprozaik [17]

Answer:

The correct option is;

A) Steel becomes too hot in the Sun and can burn the children

Explanation:

The properties of steel includes;

Low specific heat capacity, high thermal and electrical toughness, high hardness, high tensile strength, high yield strength, appreciable elongation, high fatigue strength, can easily corrode, high malleability and ability to creep

Therefore, due to the low specific heat capacity, which is 0.511 J/(g·°C) and high conductivity of steel which is about 32 W/(m·k), the temperature of the steel can rapidly rise and the hot steel surface can readily conduct the heat, (due to the temperature difference) to other bodies that come in contact

8 0
2 years ago
A dielectric material, such as Teflon®, is placed between the plates of a parallel-plate capacitor without altering the structur
Lina20 [59]

Answer: The electric field decreases because of the insertion of the Teflon.

Explanation:

If the charge on the capacitor is held fixed, the electric field as a consequence of this charge distribution (directed from the positive charged plate to the negative charged one remains unchanged.

However, as the Teflon is a dielectric material, even though doesn't allow the free movement of the electrons as an answer to an applied electric field, it allows that the electrons be displaced from the equilibrium position, leaving a local negative-charged zone close to the posiitive plate of the capacitor, and an equal but opposite charged layer close to the negative plate.

In this way, a internal electric field is created, that opposes to the external one due to the capacitor, which overall effect is diminishing the total electric field, reducing the voltage between the plates, and  increasing the capacitance proportionally to the dielectric constant of the Teflon.  

8 0
2 years ago
A plane wall of thickness 2L = 60 mm and thermal conductivity k= 5W/m.K experiences uniform volumetric heat generation at a rate
aniked [119]

Answer:

Explanation:

A plane wall of thickness 2L=40 mm and thermal conductivity k=5W/m⋅Kk=5W/m⋅K experiences uniform volumetric heat generation at a rateq  

˙

q

q

˙

​  

, while convection heat transfer occurs at both of its surfaces (x=-L, +L), each of which is exposed to a fluid of temperature T∞=20∘CT  

∞

​  

=20  

∘

C. Under steady-state conditions, the temperature distribution in the wall is of the form T(x)=a+bx+cx2T(x)=a+bx+cx  

2

 where a=82.0∘C,b=−210∘C/m,c=−2×104C/m2a=82.0  

∘

C,b=−210  

∘

C/m,c=−2×10  

4

C/m  

2

, and x is in meters. The origin of the x-coordinate is at the midplane of the wall. (a) Sketch the temperature distribution and identify significant physical features. (b) What is the volumetric rate of heat generation q in the wall? (c) Determine the surface heat fluxes, q

′′

x

(−L)q  

x

′′

​  

(−L) and q

′′

x

(+L)q  

x

′′

​  

(+L). How are these fluxes related to the heat generation rate? (d) What are the convection coefficients for the surfaces at x=-L and x=+L? (e) Obtain an expression for the heat flux distribution q

′′

x

(x)q  

x

′′

​  

(x). Is the heat flux zero at any location? Explain any significant features of the distribution. (f) If the source of the heat generation is suddenly deactivated (q=0), what is the rate of change of energy stored in the wall at this instant? (g) What temperature will the wall eventually reach with q=0? How much energy must be removed by the fluid per unit area of the wall (J/m2)(J/m  

2

) to reach this state? The density and specific heat of the wall material are 2600kg/m32600kg/m  

3

 and 800J/kg⋅K800J/kg⋅K, respectively.

6 0
2 years ago
Q9. A cylindrical specimen of a metal alloy 54.8 mm long and 10.8 mm in diameter is stressed in tension. A true stress of 365 MP
wolverine [178]

Answer:

σ = 391.2 MPa

Explanation:

The relation between true stress and true strain is given as:

σ = k εⁿ

where,

σ = true stress = 365 MPa

k = constant

ε = true strain = Change in Length/Original Length

ε = (61.8 - 54.8)/54.8 = 0.128

n = strain hardening exponent = 0.2

Therefore,

365 MPa = K (0.128)^0.2

K = 365 MPa/(0.128)^0.2

k = 550.62 MPa

Now, we have the following data:

σ = true stress = ?

k = constant = 550.62 MPa

ε = true strain = Change in Length/Original Length

ε = (64.7 - 54.8)/54.8 = 0.181

n = strain hardening exponent = 0.2

Therefore,

σ = (550.62 MPa)(0.181)^0.2

<u>σ = 391.2 MPa</u>

7 0
2 years ago
Convert 273.15 mL at 166.0 mm of Hg to its new volume at standard pressure.​
zloy xaker [14]

Answer:

(166.0 mm Hg) (273.15 mL) = (760.0 mm Hg) (x)

4 0
2 years ago
Other questions:
  • Define a) Principal Plane b) Principal Stress c) anelasticity d) yield point e) ultimate tensile stress f) hardness g) toughness
    5·1 answer
  • An excavation is at risk for cave-in and water accumulation because of the excess soil that has accumulated. What type of excava
    12·1 answer
  • A driver traveling at 65 mi/h rounds a curve on a level grade to see a truck overturned across the roadway at a distance of 350
    13·1 answer
  • A cylindrical specimen of a brass alloy having a length of 60 mm (2.36 in.) must elongate only 10.8 mm (0.425 in.) when a tensil
    9·1 answer
  • One mole of iron (6 1023 atoms) has a mass of 56 grams, and its density is 7.87 grams per cubic centimeter, so thecenter-to-cent
    15·1 answer
  • 4-6. A vertical cylindrical storage vessel is 10 m high and 2 m in diameter. The vessel contains liquid cyclohexane currently at
    10·1 answer
  • A horizontal pipe has an abrupt expansion from D1 5 8 cm to D2 5 16 cm. The water velocity in the smaller section is 10 m/s and
    7·1 answer
  • 1. A spur gear made of bronze drives a mid steel pinion with angular velocity ratio of 13 /2 : 1. Thepressure angle is 14 1/2° .
    12·1 answer
  • A glycerin pump is powered by a 5-kW electric motor. The pressure differential between the outlet and the inlet of the pump at f
    13·1 answer
  • Use the drop -down menus to select the appropriate question type. Picking between two possible alternatives: Showing an understa
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!