answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeka94
2 years ago
5

A walkman uses four standard 1.5 V batteries. How much resistance is in the circuit if it uses a current of 0.02A? *

Physics
1 answer:
hodyreva [135]2 years ago
7 0

Answer:

75ohms

Explanation:

V= IR

V = 1.5volts

I = 0.02A

1.5 = 0.02×R

Making R the subject

R = 1.5/0.02

R = 75ohms

The resistance in the circuit will be 75ohms

You might be interested in
Explain how cognitive psychologists combine traditional conditioning models with cognitive processes.
user100 [1]
Behaviorists generally claimed that conditioning occurred without thinking or reasoning ans was simply a result of consequences or reinforcement. Cognitive psychologists demonstrated that thinking and reasoning (cognition) influences the conditioning processes and that many behaviors that are conditioned depend on the type of cognitive reasoning that occurs during conditioning. Therefore, as one is being conditioned to respond to environmental stimuli or is responding to a consequence, they are also pondering and thinking about the process occuring. Cognition is often the reason individuals are not all conditioned in the same manner.
4 0
2 years ago
Read 2 more answers
Consider a father pushing a child on a playground merry-go-round. the system has a moment of inertia of 84.4 kg · m2. the father
-Dominant- [34]
<span>At time t1 = 0 since the body is at rest, the body has an angular velocity, v1, of 0. At time t = X, the body has an angular velocity of 1.43rad/s2. Since Angular acceleration is just the difference in angular speed by time. We have 4.44 = v2 -v1/t2 -t1 where V and t are angular velocity and time. So we have 4.44 = 1.43 -0/X - 0. Hence X = 1.43/4.44 = 0.33s.</span>
6 0
2 years ago
Read 2 more answers
A uniform piece of wire, 20 cm long, is bent in a right angle in the center to give it an L-shape. How far from the bend is the
zlopas [31]

Answer:

the center of mass is 7.07 cm apart from the bend

Explanation:

the centre of mass of a wire of length L is L/2 ( assuming uniform density). Then initially the x coordinate of the centre of mass is

x₁ = L/2 = 20 cm /2 = 10 cm

when the wire is bent in a right angle the coordinates of the new centre of mass will be

x₂ = L₂/2

y₂=  L₂/2

where L₂ is the length of the horizontal piece and vertical piece . Then L₂=L/2

x₂ = L₂/2 = L/4 = 20 cm/4 = 5 cm

y₂= L₂/2 = L/4 = 20 cm/4 = 5 cm

x₂=y₂=X

locating the bend in the origin (0,0) the distance to the centre of mass is

d = √(x₂²+y₂²) = √(2X²) = √2*X=√2*5cm = 7.07 cm

d = 7.07 cm

5 0
2 years ago
Read 2 more answers
If this energy were used to vaporize water at 100.0 ∘C, how much water (in liters) could be vaporized? The enthalpy of vaporizat
Zanzabum

Answer:

0.429 L of water

Explanation:

First to all, you are not putting the value of the energy given to vaporize water, so, to explain better this problem, I will assume a value of energy that I took in a similar exercise before, which is 970 kJ.

Now, assuming that the water density is 1 g/mL, this is the same as saying that 1 g of water = 1 mL of water

If this is true, then, we can assume that 1 kg of water = 1 L of water.

Knowing this, we have to use the expression to get energy which is:

Q = m * ΔH

Solving for m:

m = Q / ΔH

Now "m" is the mass, but in this case, the mass of water is the same as the volume, so it's not neccesary to do a unit conversion.

Before we begin with the calculation, we need to put the enthalpy of vaporization in the correct units, which would be in grams. To do that, we need the molar mass of water:

MM = 18 g/mol

The enthalpy in mass:

ΔH = 40.7 kJ/mol / 18 g/mol = 2.261 kJ/g

Finally, solving for m:

m = 970 / 2.261 = 429 g

Converting this into volume:

429 g = 429 mL

429 / 1000 = 0.429 L of water

3 0
2 years ago
You are given two rectangular blocks of shiny metal, Block A and Block B, and are asked to determine which one will float in a b
vladimir2022 [97]

Answer:

Explanation:

Volume of block A = 10 x 6 x 1 = 60 cm³

Mass of block A = 630 g

density of mass A = mass / density

= 630 / 60 = 10.5g / cm³

Volume of block B = 5 x 5 x 3 = 75 cm³

Mass of block A = 604 g

density of mass A = mass / density

= 604 / 75 = 8.05 g / cm³

Since density of both A and B are less than that of mercury , both will float in mercury.

7 0
2 years ago
Other questions:
  • An electric motor has a rating of 4.0 x 10^2 watts. How much time will it take for this motor to lift a 50.-kilogram mass a vert
    7·1 answer
  • A boy pulls his toy on a smooth horizontal surface with a rope inclined at 60 degrees to the horizontal. If the effective force
    9·2 answers
  • If a spear is thrown at a fish swimming in a lake, it will often miss the fish completely. Why does this happen?
    13·2 answers
  • A coil 4.00 cm in radius, containing 500 turns, is placed in a uniform magnetic field that varies with time according to B = (0.
    5·2 answers
  • A neutron star has a mass of 2.0 × 1030 kg (about the mass of our sun) and a radius of 5.0 × 103 m (about the height of a good-s
    14·2 answers
  • A rocket exhausts fuel with a velocity of 1500m/s, relative to the rocket. It starts from rest in outer space with fuel comprisi
    15·2 answers
  • How many air molecules are in a 13.0×12.0×10.0 ft room (28.2 L=1 ft3)? Assume atmospheric pressure of 1.00 atm, a room temperatu
    5·1 answer
  • Compressed air is used to fire a 60 g ball vertically upward from a 0.70-m-tall tube. The air exerts an upward force of 3.0 N on
    8·1 answer
  • A toy of mass 0.190-kg is undergoing SHM on the end of a horizontal spring with force constant k = 350 N/m . When the toy is a d
    9·1 answer
  • A fast Humvee drove from desert A to desert B. For the first 12
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!