Answer:
1. Gases can be easily liquefied into very small volumes and stored in liquid form Eg in LPGA cylinders and used in homes.
2. Balloons can be easily filled with air.
Answer:
he amount of heat gained by the water is 1.59 kJ
Explanation:
Relation between heat energy, specific heat and temperature change is as follows
Q = mCΔT
where, Q or q = heat energy
m = mass
C = specific heat =4.186J/g°C
ΔT = (28°C - 25°C) = 3°C
Now, putting the given values into the above formula as follows.
Q = mCΔT
= 127 × 4.186 × 3
= 1594.86 J or 1.59 kJ
Therefore, we can conclude that the amount of heat gained by the water is 1.59 kJ
<span>We know that density is equal to mass divided by volum, D=M/V and in this case we have 1 gallon of a solution of sulfuric acid with 37.4% of concentration in mass.
1 gallon is 3785.41 ml and according the formula M=D*V = 1.31 * 3785.41 = 4958.89 grams of solution.
Only 37.4% of the solution is sulfuric acid, that is 4958.89 * 37.4/100= 1854.62 grams
Then the number of grams of sulfuric acid is 1854.62 gr.</span>
Here's my best guess
the volume of the unit cell is (385*10^-12)^3=5.7066*10^-29 m^3
multiply by density to get mass
mass = (7 g/cm^3)*(100^3 cm^3 / 1^3 m^3) * 5.7066*10^-29 m^3= 3.99466*10^-22 g
covert to moles
3.99466*10^-22 g * 1 mol / 239.82 g = 1.6657 *10^-24 mol
convert to number of units
1.6657 *10^-24 mol * 6.23*10^23 units/mol = 1.04
385 pm = 3.85*10^(-8) cm
The volume of the unit cell is the cube of that, which is 5.71*10^(-23) cm^3. Since the ratio of mass to volume (i.e. the density) must be the same no matter what amount of TlCl you have, you can say:
7 = x/(5.71*10^(-23)), where x is the mass of the unit cell. Solving for x, you get 4*10^(-22) g.
The mass of a molecule of TlCl is 240 amu, which in grams is 4*10^(-22) g. The mass of the unit cell and the mass of a molecule of TlCl is the same. Therefore there is one formula unit of TlCl per unit cell.
Get on mathpapa is shows you the answer and how to explain it